Building the Pamir‐Tibetan Plateau—Crustal stacking, extensional collapse, and lateral extrusion in the Central Pamir: 2. Timing and rates

Geothermochronologic data outline the temperature‐deformation‐time evolution of the Muskol and Shatput gneiss domes and their hanging walls in the Central Pamir. Prograde metamorphism started before ~35 Ma and peaked at ~23–20 Ma, reflecting top‐to‐ ~N thrust‐sheet and fold‐nappe emplacement that tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tectonics (Washington, D.C.) D.C.), 2017-03, Vol.36 (3), p.385-419
Hauptverfasser: Rutte, Daniel, Ratschbacher, Lothar, Khan, Jahanzeb, Stübner, Konstanze, Hacker, Bradley R., Stearns, Michael A., Enkelmann, Eva, Jonckheere, Raymond, Pfänder, Jörg A., Sperner, Blanka, Tichomirowa, Marion
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Geothermochronologic data outline the temperature‐deformation‐time evolution of the Muskol and Shatput gneiss domes and their hanging walls in the Central Pamir. Prograde metamorphism started before ~35 Ma and peaked at ~23–20 Ma, reflecting top‐to‐ ~N thrust‐sheet and fold‐nappe emplacement that tripled the thickness of the upper ~7–10 km of the Asian crust. Multimethod thermochronology traces cooling through ~700–100°C between ~22 and 12 Ma due to exhumation along dome‐bounding normal‐sense shear zones. Synkinematic minerals date normal sense shear‐zone deformation at ~22–17 Ma. Age‐versus‐elevation relationships and paleoisotherm spacing imply exhumation at ≥3 km/Myr. South of the domes, Mesozoic granitoids record slow cooling and/or constant temperature throughout the Paleogene and enhanced cooling (7–31°C/Myr) starting between ~23 and 12 Ma and continuing today. Integrating the Central Pamir data with those of the East (Chinese) Pamir Kongur Shan and Muztaghata domes, and with the South Pamir Shakhdara dome, implies (i) regionally distributed, Paleogene crustal thickening; (ii) Pamir‐wide gravitational collapse of thickened crust starting at ~23–21 Ma during ongoing India‐Asia convergence; and (iii) termination of doming and resumption of shortening following northward propagating underthrusting of the Indian cratonic lithosphere at ≥12 Ma. Westward lateral extrusion of Pamir Plateau crust into the Hindu Kush and the Tajik depression accompanied all stages. Deep‐seated processes, e.g., slab breakoff, crustal foundering, and underthrusting of buoyant lithosphere, governed transitional phases in the Pamir, and likely the Tibet crust. Key Points South and Central Pamir crust thickened from >37 to ~22 Ma and since ~12 Ma by thrust‐sheet and fold‐nappe emplacement Northward crustal collapse formed the Central Pamir gneiss domes at ~22‐ ≥12 Ma by ~N‐S extension during ongoing India‐Asia convergence Pamir crustal evolution was governed by Indian slab breakoff and subsequent shallow underthrusting of cratonic Indian lithosphere
ISSN:0278-7407
1944-9194
DOI:10.1002/2016TC004294