Prediction of potent shRNAs with a sequential classification algorithm

The most effective shRNAs to silence a gene are calculated by a machine learning algorithm. We present SplashRNA, a sequential classifier to predict potent microRNA-based short hairpin RNAs (shRNAs). Trained on published and novel data sets, SplashRNA outperforms previous algorithms and reliably pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2017-04, Vol.35 (4), p.350-353
Hauptverfasser: Pelossof, Raphael, Fairchild, Lauren, Huang, Chun-Hao, Widmer, Christian, Sreedharan, Vipin T, Sinha, Nishi, Lai, Dan-Yu, Guan, Yuanzhe, Premsrirut, Prem K, Tschaharganeh, Darjus F, Hoffmann, Thomas, Thapar, Vishal, Xiang, Qing, Garippa, Ralph J, Rätsch, Gunnar, Zuber, Johannes, Lowe, Scott W, Leslie, Christina S, Fellmann, Christof
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 353
container_issue 4
container_start_page 350
container_title Nature biotechnology
container_volume 35
creator Pelossof, Raphael
Fairchild, Lauren
Huang, Chun-Hao
Widmer, Christian
Sreedharan, Vipin T
Sinha, Nishi
Lai, Dan-Yu
Guan, Yuanzhe
Premsrirut, Prem K
Tschaharganeh, Darjus F
Hoffmann, Thomas
Thapar, Vishal
Xiang, Qing
Garippa, Ralph J
Rätsch, Gunnar
Zuber, Johannes
Lowe, Scott W
Leslie, Christina S
Fellmann, Christof
description The most effective shRNAs to silence a gene are calculated by a machine learning algorithm. We present SplashRNA, a sequential classifier to predict potent microRNA-based short hairpin RNAs (shRNAs). Trained on published and novel data sets, SplashRNA outperforms previous algorithms and reliably predicts the most efficient shRNAs for a given gene. Combined with an optimized miR-E backbone, >90% of high-scoring SplashRNA predictions trigger >85% protein knockdown when expressed from a single genomic integration. SplashRNA can significantly improve the accuracy of loss-of-function genetics studies and facilitates the generation of compact shRNA libraries.
doi_str_mv 10.1038/nbt.3807
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1891877591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A489090968</galeid><sourcerecordid>A489090968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c584t-b8d9b6fc8e428de3055bb89370cba74964b4e1437498425c24af404fb8497ab53</originalsourceid><addsrcrecordid>eNqNkttu1DAQhiNERUtB4glQJG5AahY78SmXq4pCpaqtyuHWsh0n6yqxF48j4O3x0u1hKy6qufBo_M1o_PsvijcYLTBqxEev06IRiD8rDjAlrMKsZc9zjgSvEKZsv3gJcI0QYoSxF8V-LWrW1C09KE4uo-2cSS74MvTlOiTrUwmrq_MllL9cWpWqBPtzzlWnxtKMCsD1zqh_HWocQszQ9KrY69UI9vX2PCy-n3z6dvylOrv4fHq8PKsMFSRVWnStZr0RltSisw2iVGvRNhwZrThpGdHEYtLkVJCampqoniDSa0FarjRtDov3N3PXMeSlIMnJgbHjqLwNM0gsWiw4py1-AsoJF1m0DfruEXod5ujzQzIlWMNFTdE9NajRSuf7kKIym6FySUSLcjCRqcV_qBydnZwJ3vYu13caPuw0ZCbZ32lQM4A8_Xr1dPbixy579IDVMzhv8995cMMqwU3LDr6Vy8QAEG0v19FNKv6RGMmNyWQ2mdyYLKNvt3LNerLdHXjrqvs1IV_5wcYHej4e9hdY99VT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1886378250</pqid></control><display><type>article</type><title>Prediction of potent shRNAs with a sequential classification algorithm</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Pelossof, Raphael ; Fairchild, Lauren ; Huang, Chun-Hao ; Widmer, Christian ; Sreedharan, Vipin T ; Sinha, Nishi ; Lai, Dan-Yu ; Guan, Yuanzhe ; Premsrirut, Prem K ; Tschaharganeh, Darjus F ; Hoffmann, Thomas ; Thapar, Vishal ; Xiang, Qing ; Garippa, Ralph J ; Rätsch, Gunnar ; Zuber, Johannes ; Lowe, Scott W ; Leslie, Christina S ; Fellmann, Christof</creator><creatorcontrib>Pelossof, Raphael ; Fairchild, Lauren ; Huang, Chun-Hao ; Widmer, Christian ; Sreedharan, Vipin T ; Sinha, Nishi ; Lai, Dan-Yu ; Guan, Yuanzhe ; Premsrirut, Prem K ; Tschaharganeh, Darjus F ; Hoffmann, Thomas ; Thapar, Vishal ; Xiang, Qing ; Garippa, Ralph J ; Rätsch, Gunnar ; Zuber, Johannes ; Lowe, Scott W ; Leslie, Christina S ; Fellmann, Christof</creatorcontrib><description>The most effective shRNAs to silence a gene are calculated by a machine learning algorithm. We present SplashRNA, a sequential classifier to predict potent microRNA-based short hairpin RNAs (shRNAs). Trained on published and novel data sets, SplashRNA outperforms previous algorithms and reliably predicts the most efficient shRNAs for a given gene. Combined with an optimized miR-E backbone, &gt;90% of high-scoring SplashRNA predictions trigger &gt;85% protein knockdown when expressed from a single genomic integration. SplashRNA can significantly improve the accuracy of loss-of-function genetics studies and facilitates the generation of compact shRNA libraries.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/nbt.3807</identifier><identifier>PMID: 28263295</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13/44 ; 13/89 ; 631/114/1305 ; 631/114/2401 ; 631/337/505 ; 631/61/191/505 ; 631/67/68 ; Agriculture ; Algorithms ; Analysis ; Bioinformatics ; Biology ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; brief-communication ; Cancer ; Chromosome Mapping - methods ; Classification ; Clustered Regularly Interspaced Short Palindromic Repeats - genetics ; Computer science ; CRISPR-Cas Systems - genetics ; Datasets ; Gene Silencing ; Genetics ; Life Sciences ; Machine Learning ; Methods ; MicroRNA ; MicroRNAs ; Physiological aspects ; RNA sequencing ; RNA, Small Interfering - genetics ; Sequence Analysis, RNA - methods ; Software ; Support vector machines</subject><ispartof>Nature biotechnology, 2017-04, Vol.35 (4), p.350-353</ispartof><rights>Springer Nature America, Inc. 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Apr 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c584t-b8d9b6fc8e428de3055bb89370cba74964b4e1437498425c24af404fb8497ab53</citedby><cites>FETCH-LOGICAL-c584t-b8d9b6fc8e428de3055bb89370cba74964b4e1437498425c24af404fb8497ab53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nbt.3807$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nbt.3807$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28263295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pelossof, Raphael</creatorcontrib><creatorcontrib>Fairchild, Lauren</creatorcontrib><creatorcontrib>Huang, Chun-Hao</creatorcontrib><creatorcontrib>Widmer, Christian</creatorcontrib><creatorcontrib>Sreedharan, Vipin T</creatorcontrib><creatorcontrib>Sinha, Nishi</creatorcontrib><creatorcontrib>Lai, Dan-Yu</creatorcontrib><creatorcontrib>Guan, Yuanzhe</creatorcontrib><creatorcontrib>Premsrirut, Prem K</creatorcontrib><creatorcontrib>Tschaharganeh, Darjus F</creatorcontrib><creatorcontrib>Hoffmann, Thomas</creatorcontrib><creatorcontrib>Thapar, Vishal</creatorcontrib><creatorcontrib>Xiang, Qing</creatorcontrib><creatorcontrib>Garippa, Ralph J</creatorcontrib><creatorcontrib>Rätsch, Gunnar</creatorcontrib><creatorcontrib>Zuber, Johannes</creatorcontrib><creatorcontrib>Lowe, Scott W</creatorcontrib><creatorcontrib>Leslie, Christina S</creatorcontrib><creatorcontrib>Fellmann, Christof</creatorcontrib><title>Prediction of potent shRNAs with a sequential classification algorithm</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>The most effective shRNAs to silence a gene are calculated by a machine learning algorithm. We present SplashRNA, a sequential classifier to predict potent microRNA-based short hairpin RNAs (shRNAs). Trained on published and novel data sets, SplashRNA outperforms previous algorithms and reliably predicts the most efficient shRNAs for a given gene. Combined with an optimized miR-E backbone, &gt;90% of high-scoring SplashRNA predictions trigger &gt;85% protein knockdown when expressed from a single genomic integration. SplashRNA can significantly improve the accuracy of loss-of-function genetics studies and facilitates the generation of compact shRNA libraries.</description><subject>13/44</subject><subject>13/89</subject><subject>631/114/1305</subject><subject>631/114/2401</subject><subject>631/337/505</subject><subject>631/61/191/505</subject><subject>631/67/68</subject><subject>Agriculture</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>brief-communication</subject><subject>Cancer</subject><subject>Chromosome Mapping - methods</subject><subject>Classification</subject><subject>Clustered Regularly Interspaced Short Palindromic Repeats - genetics</subject><subject>Computer science</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Datasets</subject><subject>Gene Silencing</subject><subject>Genetics</subject><subject>Life Sciences</subject><subject>Machine Learning</subject><subject>Methods</subject><subject>MicroRNA</subject><subject>MicroRNAs</subject><subject>Physiological aspects</subject><subject>RNA sequencing</subject><subject>RNA, Small Interfering - genetics</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Software</subject><subject>Support vector machines</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>N95</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkttu1DAQhiNERUtB4glQJG5AahY78SmXq4pCpaqtyuHWsh0n6yqxF48j4O3x0u1hKy6qufBo_M1o_PsvijcYLTBqxEev06IRiD8rDjAlrMKsZc9zjgSvEKZsv3gJcI0QYoSxF8V-LWrW1C09KE4uo-2cSS74MvTlOiTrUwmrq_MllL9cWpWqBPtzzlWnxtKMCsD1zqh_HWocQszQ9KrY69UI9vX2PCy-n3z6dvylOrv4fHq8PKsMFSRVWnStZr0RltSisw2iVGvRNhwZrThpGdHEYtLkVJCampqoniDSa0FarjRtDov3N3PXMeSlIMnJgbHjqLwNM0gsWiw4py1-AsoJF1m0DfruEXod5ujzQzIlWMNFTdE9NajRSuf7kKIym6FySUSLcjCRqcV_qBydnZwJ3vYu13caPuw0ZCbZ32lQM4A8_Xr1dPbixy579IDVMzhv8995cMMqwU3LDr6Vy8QAEG0v19FNKv6RGMmNyWQ2mdyYLKNvt3LNerLdHXjrqvs1IV_5wcYHej4e9hdY99VT</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Pelossof, Raphael</creator><creator>Fairchild, Lauren</creator><creator>Huang, Chun-Hao</creator><creator>Widmer, Christian</creator><creator>Sreedharan, Vipin T</creator><creator>Sinha, Nishi</creator><creator>Lai, Dan-Yu</creator><creator>Guan, Yuanzhe</creator><creator>Premsrirut, Prem K</creator><creator>Tschaharganeh, Darjus F</creator><creator>Hoffmann, Thomas</creator><creator>Thapar, Vishal</creator><creator>Xiang, Qing</creator><creator>Garippa, Ralph J</creator><creator>Rätsch, Gunnar</creator><creator>Zuber, Johannes</creator><creator>Lowe, Scott W</creator><creator>Leslie, Christina S</creator><creator>Fellmann, Christof</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20170401</creationdate><title>Prediction of potent shRNAs with a sequential classification algorithm</title><author>Pelossof, Raphael ; Fairchild, Lauren ; Huang, Chun-Hao ; Widmer, Christian ; Sreedharan, Vipin T ; Sinha, Nishi ; Lai, Dan-Yu ; Guan, Yuanzhe ; Premsrirut, Prem K ; Tschaharganeh, Darjus F ; Hoffmann, Thomas ; Thapar, Vishal ; Xiang, Qing ; Garippa, Ralph J ; Rätsch, Gunnar ; Zuber, Johannes ; Lowe, Scott W ; Leslie, Christina S ; Fellmann, Christof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c584t-b8d9b6fc8e428de3055bb89370cba74964b4e1437498425c24af404fb8497ab53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>13/44</topic><topic>13/89</topic><topic>631/114/1305</topic><topic>631/114/2401</topic><topic>631/337/505</topic><topic>631/61/191/505</topic><topic>631/67/68</topic><topic>Agriculture</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>brief-communication</topic><topic>Cancer</topic><topic>Chromosome Mapping - methods</topic><topic>Classification</topic><topic>Clustered Regularly Interspaced Short Palindromic Repeats - genetics</topic><topic>Computer science</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Datasets</topic><topic>Gene Silencing</topic><topic>Genetics</topic><topic>Life Sciences</topic><topic>Machine Learning</topic><topic>Methods</topic><topic>MicroRNA</topic><topic>MicroRNAs</topic><topic>Physiological aspects</topic><topic>RNA sequencing</topic><topic>RNA, Small Interfering - genetics</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Software</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pelossof, Raphael</creatorcontrib><creatorcontrib>Fairchild, Lauren</creatorcontrib><creatorcontrib>Huang, Chun-Hao</creatorcontrib><creatorcontrib>Widmer, Christian</creatorcontrib><creatorcontrib>Sreedharan, Vipin T</creatorcontrib><creatorcontrib>Sinha, Nishi</creatorcontrib><creatorcontrib>Lai, Dan-Yu</creatorcontrib><creatorcontrib>Guan, Yuanzhe</creatorcontrib><creatorcontrib>Premsrirut, Prem K</creatorcontrib><creatorcontrib>Tschaharganeh, Darjus F</creatorcontrib><creatorcontrib>Hoffmann, Thomas</creatorcontrib><creatorcontrib>Thapar, Vishal</creatorcontrib><creatorcontrib>Xiang, Qing</creatorcontrib><creatorcontrib>Garippa, Ralph J</creatorcontrib><creatorcontrib>Rätsch, Gunnar</creatorcontrib><creatorcontrib>Zuber, Johannes</creatorcontrib><creatorcontrib>Lowe, Scott W</creatorcontrib><creatorcontrib>Leslie, Christina S</creatorcontrib><creatorcontrib>Fellmann, Christof</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pelossof, Raphael</au><au>Fairchild, Lauren</au><au>Huang, Chun-Hao</au><au>Widmer, Christian</au><au>Sreedharan, Vipin T</au><au>Sinha, Nishi</au><au>Lai, Dan-Yu</au><au>Guan, Yuanzhe</au><au>Premsrirut, Prem K</au><au>Tschaharganeh, Darjus F</au><au>Hoffmann, Thomas</au><au>Thapar, Vishal</au><au>Xiang, Qing</au><au>Garippa, Ralph J</au><au>Rätsch, Gunnar</au><au>Zuber, Johannes</au><au>Lowe, Scott W</au><au>Leslie, Christina S</au><au>Fellmann, Christof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of potent shRNAs with a sequential classification algorithm</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2017-04-01</date><risdate>2017</risdate><volume>35</volume><issue>4</issue><spage>350</spage><epage>353</epage><pages>350-353</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><abstract>The most effective shRNAs to silence a gene are calculated by a machine learning algorithm. We present SplashRNA, a sequential classifier to predict potent microRNA-based short hairpin RNAs (shRNAs). Trained on published and novel data sets, SplashRNA outperforms previous algorithms and reliably predicts the most efficient shRNAs for a given gene. Combined with an optimized miR-E backbone, &gt;90% of high-scoring SplashRNA predictions trigger &gt;85% protein knockdown when expressed from a single genomic integration. SplashRNA can significantly improve the accuracy of loss-of-function genetics studies and facilitates the generation of compact shRNA libraries.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>28263295</pmid><doi>10.1038/nbt.3807</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1087-0156
ispartof Nature biotechnology, 2017-04, Vol.35 (4), p.350-353
issn 1087-0156
1546-1696
language eng
recordid cdi_proquest_miscellaneous_1891877591
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 13/44
13/89
631/114/1305
631/114/2401
631/337/505
631/61/191/505
631/67/68
Agriculture
Algorithms
Analysis
Bioinformatics
Biology
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
brief-communication
Cancer
Chromosome Mapping - methods
Classification
Clustered Regularly Interspaced Short Palindromic Repeats - genetics
Computer science
CRISPR-Cas Systems - genetics
Datasets
Gene Silencing
Genetics
Life Sciences
Machine Learning
Methods
MicroRNA
MicroRNAs
Physiological aspects
RNA sequencing
RNA, Small Interfering - genetics
Sequence Analysis, RNA - methods
Software
Support vector machines
title Prediction of potent shRNAs with a sequential classification algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A10%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20potent%20shRNAs%20with%20a%20sequential%20classification%20algorithm&rft.jtitle=Nature%20biotechnology&rft.au=Pelossof,%20Raphael&rft.date=2017-04-01&rft.volume=35&rft.issue=4&rft.spage=350&rft.epage=353&rft.pages=350-353&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/nbt.3807&rft_dat=%3Cgale_proqu%3EA489090968%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1886378250&rft_id=info:pmid/28263295&rft_galeid=A489090968&rfr_iscdi=true