Prediction of potent shRNAs with a sequential classification algorithm

The most effective shRNAs to silence a gene are calculated by a machine learning algorithm. We present SplashRNA, a sequential classifier to predict potent microRNA-based short hairpin RNAs (shRNAs). Trained on published and novel data sets, SplashRNA outperforms previous algorithms and reliably pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2017-04, Vol.35 (4), p.350-353
Hauptverfasser: Pelossof, Raphael, Fairchild, Lauren, Huang, Chun-Hao, Widmer, Christian, Sreedharan, Vipin T, Sinha, Nishi, Lai, Dan-Yu, Guan, Yuanzhe, Premsrirut, Prem K, Tschaharganeh, Darjus F, Hoffmann, Thomas, Thapar, Vishal, Xiang, Qing, Garippa, Ralph J, Rätsch, Gunnar, Zuber, Johannes, Lowe, Scott W, Leslie, Christina S, Fellmann, Christof
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The most effective shRNAs to silence a gene are calculated by a machine learning algorithm. We present SplashRNA, a sequential classifier to predict potent microRNA-based short hairpin RNAs (shRNAs). Trained on published and novel data sets, SplashRNA outperforms previous algorithms and reliably predicts the most efficient shRNAs for a given gene. Combined with an optimized miR-E backbone, >90% of high-scoring SplashRNA predictions trigger >85% protein knockdown when expressed from a single genomic integration. SplashRNA can significantly improve the accuracy of loss-of-function genetics studies and facilitates the generation of compact shRNA libraries.
ISSN:1087-0156
1546-1696
DOI:10.1038/nbt.3807