The Sphingosine-1-Phosphate Modulator FTY720 Targets Multiple Myeloma via the CXCR4/CXCL12 Pathway

To explore the functional consequences of possible cross-talk between the CXCR4/CXCL12 and the sphingosine-1-phosphate (S1P) pathways in multiple myeloma (MM) cells and to evaluate the effect of S1P targeting with the FTY720 modulator as a potential anti-MM therapeutic strategy. S1P targeting with F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical cancer research 2017-04, Vol.23 (7), p.1733-1747
Hauptverfasser: Beider, Katia, Rosenberg, Evgenia, Bitner, Hanna, Shimoni, Avichai, Leiba, Merav, Koren-Michowitz, Maya, Ribakovsky, Elena, Klein, Shiri, Olam, Devorah, Weiss, Lola, Wald, Hanna, Abraham, Michal, Galun, Eithan, Peled, Amnon, Nagler, Arnon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To explore the functional consequences of possible cross-talk between the CXCR4/CXCL12 and the sphingosine-1-phosphate (S1P) pathways in multiple myeloma (MM) cells and to evaluate the effect of S1P targeting with the FTY720 modulator as a potential anti-MM therapeutic strategy. S1P targeting with FTY720 induces MM cell apoptosis. The combination of FTY720 with the SPHK1 inhibitor SKI-II results in synergistic inhibition of MM growth. CXCR4/CXCL12-enhanced expression correlates with reduced MM cell sensitivity to both FTY720 and SKI-II inhibitors, and with SPHK1 coexpression in both cell lines and primary MM bone marrow (BM) samples, suggesting regulative cross-talk between the CXCR4/CXCL12 and SPHK1 pathways in MM cells. FTY720 was found to directly target CXCR4. FTY720 profoundly reduces CXCR4 cell-surface levels and abrogates the CXCR4-mediated functions of migration toward CXCL12 and signaling pathway activation. Moreover, FTY720 cooperates with bortezomib, inducing its cytotoxic activity and abrogating the bortezomib-mediated increase in CXCR4 expression. FTY720 effectively targets bortezomib-resistant cells and increases their sensitivity to bortezomib, promoting DNA damage. Finally, in a recently developed novel xenograft model of CXCR4-dependent systemic MM with BM involvement, FTY720 treatment effectively reduces tumor burden in the BM of MM-bearing mice. FTY720 in combination with bortezomib demonstrates superior tumor growth inhibition and abrogates bortezomib-induced CXCR4 increase on MM cells. Altogether, our work identifies a cross-talk between the S1P and CXCR4 pathways in MM cells and provides a preclinical rationale for the therapeutic application of FTY720 in combination with bortezomib in patients with MM. .
ISSN:1078-0432
1557-3265
DOI:10.1158/1078-0432.CCR-15-2618