BREMSO: a simple score to predict early the natural course of multiple sclerosis
Background and purpose Early prediction of long‐term disease evolution is a major challenge in the management of multiple sclerosis (MS). Our aim was to predict the natural course of MS using the Bayesian Risk Estimate for MS at Onset (BREMSO), which gives an individual risk score calculated from de...
Gespeichert in:
Veröffentlicht in: | European journal of neurology 2015-06, Vol.22 (6), p.981-989 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background and purpose
Early prediction of long‐term disease evolution is a major challenge in the management of multiple sclerosis (MS). Our aim was to predict the natural course of MS using the Bayesian Risk Estimate for MS at Onset (BREMSO), which gives an individual risk score calculated from demographic and clinical variables collected at disease onset.
Methods
An observational study was carried out collecting data from MS patients included in MSBase, an international registry. Disease impact was studied using the Multiple Sclerosis Severity Score (MSSS) and time to secondary progression (SP). To evaluate the natural history of the disease, patients were analysed only if they did not receive immune therapies or only up to the time of starting these therapies.
Results
Data from 14 211 patients were analysed. The median BREMSO score was significantly higher in the subgroups of patients whose disease had a major clinical impact (MSSS≥ third quartile vs. ≤ first quartile, P |
---|---|
ISSN: | 1351-5101 1468-1331 |
DOI: | 10.1111/ene.12696 |