INFERENCE ON SELF-EXCITING JUMPS IN PRICES AND VOLATILITY USING HIGH-FREQUENCY MEASURES

Dynamic jumps in the price and volatility of an asset are modelled using a joint Hawkes process in conjunction with a bivariate jump diffusion. A state-space representation is used to link observed returns, plus nonparametric measures of integrated volatility and price jumps, to the specified model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied econometrics (Chichester, England) England), 2017-04, Vol.32 (3), p.504-532
Hauptverfasser: MANEESOONTHORN, WORAPREE, FORBES, CATHERINE S., MARTIN, GAEL M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dynamic jumps in the price and volatility of an asset are modelled using a joint Hawkes process in conjunction with a bivariate jump diffusion. A state-space representation is used to link observed returns, plus nonparametric measures of integrated volatility and price jumps, to the specified model components, with Bayesian inference conducted using a Markov chain Monte Carlo algorithm. An evaluation of marginal likelihoods for the proposed model relative to a large number of alternative models, including some that have featured in the literature, is provided. An extensive empirical investigation is undertaken using data on the S&P 500 market index over the 1996–2014 period, with substantial support for dynamic jump intensities—including in terms of predictive accuracy—documented.
ISSN:0883-7252
1099-1255
DOI:10.1002/jae.2547