Synthesis, Characterization and Enhanced Sensing Properties of a NiO/ZnO p-n Junctions Sensor for the SF₆ Decomposition Byproducts SO₂, SO₂F₂, and SOF

The detection of partial discharge and analysis of the composition and content of sulfur hexafluoride SF₆ gas components are important to evaluate the operating state and insulation level of gas-insulated switchgear (GIS) equipment. This paper reported a novel sensing material made of pure ZnO and N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2017-04, Vol.17 (4)
Hauptverfasser: Liu, Hongcheng, Zhou, Qu, Zhang, Qingyan, Hong, Changxiang, Xu, Lingna, Jin, Lingfeng, Chen, Weigen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The detection of partial discharge and analysis of the composition and content of sulfur hexafluoride SF₆ gas components are important to evaluate the operating state and insulation level of gas-insulated switchgear (GIS) equipment. This paper reported a novel sensing material made of pure ZnO and NiO-decorated ZnO nanoflowers which were synthesized by a facile and environment friendly hydrothermal process for the detection of SF₆ decomposition byproducts. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) were used to characterize the structural and morphological properties of the prepared gas-sensitive materials. Planar-type chemical gas sensors were fabricated and their gas sensing performances toward the SF₆ decomposition byproducts SO₂, SO₂F₂, and SOF₂ were systemically investigated. Interestingly, the sensing behaviors of the fabricated ZnO nanoflowers-based sensor to SO₂, SO₂F₂, and SOF₂ gases can be obviously enhanced in terms of lower optimal operating temperature, higher gas response and shorter response-recovery time by introducing NiO. Finally, a possible gas sensing mechanism for the formation of the p-n junctions between NiO and ZnO is proposed to explain the enhanced gas response. All results demonstrate a promising approach to fabricate high-performance gas sensors to detect SF₆ decomposition byproducts.
ISSN:1424-8220
DOI:10.3390/s17040913