Regulation of axon arborization pattern in the developing chick ciliary ganglion: Possible involvement of caspase 3
During a certain critical period in the development of the central and peripheral nervous systems, axonal branches and synapses are massively reorganized to form mature connections. In this process, neurons search their appropriate targets, expanding and/or retracting their axons. Recent work sugges...
Gespeichert in:
Veröffentlicht in: | Development, growth & differentiation growth & differentiation, 2017-04, Vol.59 (3), p.115-128 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | During a certain critical period in the development of the central and peripheral nervous systems, axonal branches and synapses are massively reorganized to form mature connections. In this process, neurons search their appropriate targets, expanding and/or retracting their axons. Recent work suggested that the caspase superfamily regulates the axon morphology. Here, we tested the hypothesis that caspase 3, which is one of the major executioners in apoptotic cell death, is involved in regulating the axon arborization. The embryonic chicken ciliary ganglion was used as a model system of synapse reorganization. A dominant negative mutant of caspase‐3 precursor (C3DN) was made and overexpressed in presynaptic neurons in the midbrain to interfere with the intrinsic caspase‐3 activity using an in ovo electroporation method. The axon arborization pattern was 3‐dimensionally and quantitatively analyzed in the ciliary ganglion. The overexpression of C3DN significantly reduced the number of branching points, the branch order and the complexity index, whereas it significantly elongated the terminal branches at E6. It also increased the internodal distance significantly at E8. But, these effects were negligible at E10 or later. During E6–8, there appeared to be a dynamic balance in the axon arborization pattern between the “targeting” mode, which is accompanied by elongation of terminal branches and the pruning of collateral branches, and the “pathfinding” mode, which is accompanied by the retraction of terminal branches and the sprouting of new collateral branches. The local and transient activation of caspase 3 could direct the balance towards the pathfinding mode.
We propose that there should be a dynamic balance between at least two modes of axon arborization; the “targeting” mode, which is accompanied with the elongation of terminal branches and the pruning of collateral branches, and the “pathfinding” mode, which is accompanied with the retraction of terminal branches and the sprouting of new collateral branches. Although the weight shifted towards the targeting mode during development, the activation of caspase 3 could direct the balance to the pathfinding mode. |
---|---|
ISSN: | 0012-1592 1440-169X |
DOI: | 10.1111/dgd.12346 |