Ultrafast Dynamics of a Triazene: Excited-State Pathways and the Impact of Binding to the Minor Groove of DNA and Further Biomolecular Systems

Many synthetic DNA minor groove binders exhibit a strong increase in fluorescence when bound to DNA. The pharmaceutical-relevant berenil (diminazene aceturate) is an exception with an extremely low fluorescence quantum yield (on the order of 10–4). We investigate the ultrafast excited-state dynamics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2017-05, Vol.8 (9), p.1986-1992
Hauptverfasser: Grimmelsmann, Lena, Marefat Khah, Alireza, Spies, Christian, Hättig, Christof, Nuernberger, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many synthetic DNA minor groove binders exhibit a strong increase in fluorescence when bound to DNA. The pharmaceutical-relevant berenil (diminazene aceturate) is an exception with an extremely low fluorescence quantum yield (on the order of 10–4). We investigate the ultrafast excited-state dynamics of this triazene by femtosecond time-resolved fluorescence experiments in water, ethylene glycol, and buffer and bound to the enzyme β-trypsin, the minor groove of AT-rich DNA, and G-quadruplex DNA. Ab initio calculations provide additional mechanistic insight. The complementing studies unveil that the excited-state motion initiated by ππ* excitation occurs in two phases: a subpicosecond phase associated with the lengthening of the central NN double bond, followed by a bicycle-pedal-type motion of the triazene bridge, which is almost volume-conserving and can proceed efficiently within only a few picoseconds even under spatially confined conditions. Our results elucidate the excited-state relaxation mechanism of aromatic triazenes and explain the modest sensitivity of the fluorescence quantum yield of berenil even when it is bound to various biomolecules.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.7b00472