Nuclear-magnetic-resonance relaxation due to the translational diffusion of fluid confined to quasi-two-dimensional pores
Nuclear-magnetic-resonance (NMR) relaxation experimentation is an effective technique for nondestructively probing the dynamics of proton-bearing fluids in porous media. The frequency-dependent relaxation rate T_{1}^{-1} can yield a wealth of information on the fluid dynamics within the pore provide...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2017-03, Vol.95 (3-1), p.033116-033116, Article 033116 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nuclear-magnetic-resonance (NMR) relaxation experimentation is an effective technique for nondestructively probing the dynamics of proton-bearing fluids in porous media. The frequency-dependent relaxation rate T_{1}^{-1} can yield a wealth of information on the fluid dynamics within the pore provided data can be fit to a suitable spin diffusion model. A spin diffusion model yields the dipolar correlation function G(t) describing the relative translational motion of pairs of ^{1}H spins which then can be Fourier transformed to yield T_{1}^{-1}. G(t) for spins confined to a quasi-two-dimensional (Q2D) pore of thickness h is determined using theoretical and Monte Carlo techniques. G(t) shows a transition from three- to two-dimensional motion with the transition time proportional to h^{2}. T_{1}^{-1} is found to be independent of frequency over the range 0.01-100 MHz provided h≳5 nm and increases with decreasing frequency and decreasing h for pores of thickness h |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/PhysRevE.95.033116 |