Glucose-sensitive self-healing hydrogel as sacrificial materials to fabricate vascularized constructs
Abstract A major challenge in tissue engineering is the lack of proper vascularization. Although various approaches have been used to build vascular network in a tissue engineering construct, there remain some drawbacks. Herein, a glucose-sensitive self-healing hydrogel are employed as sacrificial m...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2017-07, Vol.133, p.20-28 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract A major challenge in tissue engineering is the lack of proper vascularization. Although various approaches have been used to build vascular network in a tissue engineering construct, there remain some drawbacks. Herein, a glucose-sensitive self-healing hydrogel are employed as sacrificial materials to fabricate branched tubular channels within a construct. The hydrogel composes of mainly reversibly crosslinked poly(ethylene glycol) diacrylate and dithiothreitol with borax as the glucose-sensitive motif. The hydrogel is injectable and mechanically strong after injection. Moreover, it can be rapidly removed by immersion in the cell culture medium. To show the feasibility in building a vascularized tissue construct, the designed branching vascular patterns of the glucose-sensitive hydrogel are extruded and embedded in a non glucose-sensitive hydrogel containing neural stem cells. Vascular endothelial cells seeded in the lumen of the channels by perfusion can line the channel wall and migrate into the non-sacrificial hydrogel after 3 days. In long-term (∼14 days), the endothelial cells form capillary-like structure (vascular network) while neural stem cells form neurosphere-like structure (neural development) in the construct, revealing the morphology of “a vascularized neural tissue”. The novel sacrificial materials can create complicated but easily removable structure for building a vascularized tissue construct particularly a neurovascular unit. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2017.04.008 |