Osteoinductive composite coatings for flexible intramedullary nails
This work presents composite coatings based on a copolymer of vinylidene fluoride with tetrafluoroethylene (VDF-TeFE) and hydroxyapatite (HA) for flexible intramedullary nails (FIN). The effect of the proportion of VDF-TeFE (100–25% wt.) on physicochemical and biological properties of the composite...
Gespeichert in:
Veröffentlicht in: | Materials Science & Engineering C 2017-06, Vol.75, p.207-220 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work presents composite coatings based on a copolymer of vinylidene fluoride with tetrafluoroethylene (VDF-TeFE) and hydroxyapatite (HA) for flexible intramedullary nails (FIN). The effect of the proportion of VDF-TeFE (100–25% wt.) on physicochemical and biological properties of the composite coatings was investigated. It was shown that a decrease of VDF-TeFE in the coating hinders its crystallization in β and γ forms which have piezoelectric properties. The decrease also reduces an adhesive strength to 9.9±2.4MPa and a relative elongation to 5.9±1.2%, but results in increased osteogenesis. It was demonstrated that the composite coatings with 35% VDF-TeFE has the required combination of physicochemical properties and osteogenic activity. Comparative studies of composite coatings (35% VDF-TeFE) and calcium phosphate coatings produced using micro-arc oxidation, demonstrated comparable results for strength of bonding of these FINs with trabecular bones (~530MPa). It was hypothesized that the high osteoinductive properties of the composite coatings are due to their piezoelectric properties.
[Display omitted]
•VDF-TeFE copolymer/HA composite coatings for flexible intramedullary nail were designed.•The influence of the amount of VDF-TeFE on properties of composites was studied.•VDF-TeFE has electrical activity phases regardless of its content in the composite.•Osteoinductive properties, likely is caused by piezoelectric properties of the composite. |
---|---|
ISSN: | 0928-4931 1873-0191 |
DOI: | 10.1016/j.msec.2017.02.073 |