Engineering solutions for food-energy-water systems: it is more than engineering

Food, energy, and water systems interact extensively, giving rise to the term “food-energy-water (FEW) nexus,” with the term “nexus” signifying connectedness and interrelationships. A systems approach involving multidisciplinary and transdisciplinary teams and partnerships is needed to address compl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental studies and sciences 2016-03, Vol.6 (1), p.172-182
Hauptverfasser: Wolfe, M. L., Ting, K. C., Scott, N., Sharpley, A., Jones, J. W., Verma, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Food, energy, and water systems interact extensively, giving rise to the term “food-energy-water (FEW) nexus,” with the term “nexus” signifying connectedness and interrelationships. A systems approach involving multidisciplinary and transdisciplinary teams and partnerships is needed to address complex challenges of the nexus. A concurrent cyber-physical framework comprised of systems informatics, information analysis methods and tools, and systems analytics and decision support could provide a viable approach for addressing FEW system challenges. A fundamental requirement for implementing the framework is data. Needed data are often difficult to obtain; for example, while much agricultural production system data are collected, the data are not generally available. A priority for addressing FEW system challenges must be development of mechanisms for widespread curation and sharing of data; a few such efforts are underway. Implementing the framework also requires many collaborations. Creating new collaborations among multiple disciplines and organizations to implement the framework could be aided by convergence thinking, which engages approaches to problem solving that transcend disciplines and integrates knowledge from the physical, biological, social, and mathematical sciences and engineering to form comprehensive and integrated thinking at the interfaces of areas. A variety of organizations, private and public, can help in facilitating collaboration and partnerships among the disciplines. Government agencies, industry, academia, and professional societies can all play significant roles in furthering collaboration to address challenges in integrated FEW systems using a systems approach.
ISSN:2190-6483
2190-6491
DOI:10.1007/s13412-016-0363-z