In silico kinetics of alkaline hydrolysis of 1,3,5-trinitro-1,3,5-triazinane (RDX): M06-2X investigation

Alkaline hydrolysis of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), as one of the most promising methods for nitrocompound remediation, was investigated computationally at the PCM(Pauling)/M06-2X/6-311++G(d,p) level of theory. Computational simulation shows that RDX hydrolysis is a highly exotherm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science--processes & impacts 2017-03, Vol.19 (3), p.388-394
Hauptverfasser: Sviatenko, L K, Gorb, L, Leszczynska, D, Okovytyy, S I, Shukla, M K, Leszczynski, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Alkaline hydrolysis of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), as one of the most promising methods for nitrocompound remediation, was investigated computationally at the PCM(Pauling)/M06-2X/6-311++G(d,p) level of theory. Computational simulation shows that RDX hydrolysis is a highly exothermic multistep process involving initial deprotonation and nitrite elimination, cycle cleavage, further transformation of cycle-opened intermediates to end products caused by a series of C-N bond ruptures, hydroxide attachments, and proton transfers. Computationally predicted products of RDX hydrolysis such as nitrite, nitrous oxide, formaldehyde, formate, and ammonia correspond to experimentally observed ones. Accounting of specific hydration of hydroxide is critical to create an accurate kinetic model for alkaline hydrolysis. Simulated kinetics of the hydrolysis are in good agreement with available experimental data. A period of one month is necessary for 99% RDX decomposition at pH 10. Computations predict significant increases of the reaction rate of hydrolysis at pH 11, pH 12, and pH 13.
ISSN:2050-7887
2050-7895
DOI:10.1039/c6em00565a