Ontogeny of modern human longitudinal body and transverse shoulder proportions

Objectives Whereas variation of modern human adult body size and shape has been widely studied in the context of ecogeographical clines, little is known about the differential growth patterns of transverse and longitudinal dimensions among human populations. Our study explored the ontogenetic variat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of human biology 2017-03, Vol.29 (2), p.np-n/a
Hauptverfasser: Frelat, Mélanie A., Coquerelle, Michael, Trinkaus, Erik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objectives Whereas variation of modern human adult body size and shape has been widely studied in the context of ecogeographical clines, little is known about the differential growth patterns of transverse and longitudinal dimensions among human populations. Our study explored the ontogenetic variation of those body proportions in modern humans. Methods We compared results from four different approaches to study cross‐sectional skeletal samples of Africans (n = 43), Amerindians (n = 69) and Europeans (n = 40) from 0 to 14 years of age. Clavicle, humerus, and femur intermetaphyseal lengths, and femoral distal metaphyseal breadth, were measured. Average ontogenetic trajectories were computed in order to compare the growth patterns of the three groups. Results Our findings demonstrated that the three geographical groups shared similar absolute and relative patterns of change with age for the four dimensions considered. Although interpopulation differences existed in transverse to longitudinal as well as in interlimb proportions, those differences did not seem to remain constant throughout ontogeny, similar to what has been shown for intralimb proportions. Growth rates of transverse shoulder proportions differed between populations from different regions after 10 years, whereas those for longitudinal proportions were very similar. Conclusions The ontogeny of transverse shoulder proportions is more complex than what is observed for bi‐iliac breadth, suggesting that transverse shoulder to limb proportions are not solely influenced by ecogeographical conditions. Our analysis demonstrates that methodologies that incorporate critical dimensions of body form could shed new light on human adaptation in both paleontological and neontological contexts.
ISSN:1042-0533
1520-6300
DOI:10.1002/ajhb.22925