Preparation and Applications of Dendronized Polymer-Enzyme Conjugates

Dendronized polymer-enzyme conjugates are large, water-soluble macromolecular structures built from a linear, fully synthetic, dendronized polymer (denpol), and several copies of enzyme molecules covalently bound to the peripheral functional groups of the denpol. Since denpol chains comprise repeati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods in enzymology 2017, Vol.590, p.445-474
Hauptverfasser: Küchler, Andreas, Messmer, Daniel, Schlüter, A Dieter, Walde, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dendronized polymer-enzyme conjugates are large, water-soluble macromolecular structures built from a linear, fully synthetic, dendronized polymer (denpol), and several copies of enzyme molecules covalently bound to the peripheral functional groups of the denpol. Since denpol chains comprise repeating units with regularly branched side chains (dendrons), denpols have a cylindrical shape and are much thicker than conventional linear polymers. Depending on the dendron generation and chemical structure, denpols may have a large number of functional groups on their surface, exposed to the aqueous medium in which they are dissolved. Enzymes (and also other molecules) can be attached to these functional groups, for example, via a stable bis-aryl hydrazone (BAH) bond. The dendronized polymer scaffold might also serve as a nanoarmor and stabilize the delicate enzymes. One of the denpols which can be used for the preparation of denpol-enzyme conjugates is de-PG2. It has a poly(methacrylate) backbone and consists of second-generation dendrons with four peripheral amino groups in each repeating unit. The synthesis of de-PG2 and the preparation of a de-PG2 conjugate carrying BAH-linked proteinase K (proK), as an example, are described here for applications in the field of enzyme immobilization on solid surfaces. The nanoarmored enzyme-polymer conjugate indicated high stability and retention of enzymatic activity.
ISSN:1557-7988
DOI:10.1016/bs.mie.2017.01.014