KELT-16b: A Highly Irradiated, Ultra-short Period Hot Jupiter Nearing Tidal Disruption
We announce the discovery of KELT-16b, a highly irradiated, ultra-short period hot Jupiter transiting the relatively bright (V = 11.7) star TYC 2688-1839-1/KELT-16. A global analysis of the system shows KELT-16 to be an F7V star with K, , , , and . The planet is a relatively high-mass inflated gas g...
Gespeichert in:
Veröffentlicht in: | The Astronomical journal 2017-03, Vol.153 (3), p.97-97 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We announce the discovery of KELT-16b, a highly irradiated, ultra-short period hot Jupiter transiting the relatively bright (V = 11.7) star TYC 2688-1839-1/KELT-16. A global analysis of the system shows KELT-16 to be an F7V star with K, , , , and . The planet is a relatively high-mass inflated gas giant with , , density g cm−3, surface gravity , and K. The best-fitting linear ephemeris is and day. KELT-16b joins WASP-18b, −19b, −43b, −103b, and HATS-18b as the only giant transiting planets with P < 1 day. Its ultra-short period and high irradiation make it a benchmark target for atmospheric studies by the Hubble Space Telescope, Spitzer, and eventually the James Webb Space Telescope. For example, as a hotter, higher-mass analog of WASP-43b, KELT-16b may feature an atmospheric temperature-pressure inversion and day-to-night temperature swing extreme enough for TiO to rain out at the terminator. KELT-16b could also join WASP-43b in extending tests of the observed mass-metallicity relation of the solar system gas giants to higher masses. KELT-16b currently orbits at a mere ∼1.7 Roche radii from its host star, and could be tidally disrupted in as little as a few ×105 years (for a stellar tidal quality factor of ). Finally, the likely existence of a widely separated bound stellar companion in the KELT-16 system makes it possible that Kozai-Lidov (KL) oscillations played a role in driving KELT-16b inward to its current precarious orbit. |
---|---|
ISSN: | 0004-6256 1538-3881 1538-3881 |
DOI: | 10.3847/1538-3881/153/3/97 |