Similarity of osmoregulatory capacity in coastal and inland alligator gar

The alligator gar Atractosteus spatula is a primitive fish species, occupying a wide range of temperature and salinity habitats. Long-distance movements are limited, leading to genetic differentiation between inland and coastal populations. Unknown is whether physiological capacity differs between g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comparative biochemistry and physiology. Part A, Molecular & integrative physiology Molecular & integrative physiology, 2017-07, Vol.209, p.16-24
Hauptverfasser: Allen, Peter J., Haukenes, Alf, Lochmann, Steve E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The alligator gar Atractosteus spatula is a primitive fish species, occupying a wide range of temperature and salinity habitats. Long-distance movements are limited, leading to genetic differentiation between inland and coastal populations. Unknown is whether physiological capacity differs between geographically separated populations, particularly for traits important to osmoregulation in saline environments. Alligator gar from inland and coastal populations were reared in a similar environment and exposed to temperature (10, 30°C) and salinity (0, 20ppt) extremes to determine whether iono- and osmoregulatory ability differed between populations. There were few differences in osmoregulatory ability between populations, with similar gill, blood and gastrointestinal tract osmoregulatory parameters. Blood plasma osmolality, ion concentrations, intestinal pH and bicarbonate base concentrations, intestinal fluid osmolality, ion concentrations and gill Na+, K+-ATPase (NKA) activity were similar between populations. Notably, gar from both populations did not osmoregulate well at low temperature and high salinity, with elevated plasma osmolality and ion concentrations, low gill NKA, and little evidence of gastrointestinal tract contribution to ionic and base regulation based on a lack of intestinal fluid and low base content. Therefore, the hypothesis that coastal gar would have improved osmotic regulatory ability in saline environments as compared to inland alligator gar was not supported, suggesting physiological capacity may be retained in primitive species possibly due to its importance to their persistence through time.
ISSN:1095-6433
1531-4332
DOI:10.1016/j.cbpa.2017.04.003