Shifts in microbial community structure and diversity in a MBR combined with worm reactors treating synthetic wastewater

The chemical oxygen demand(COD) and NH3-N removal, membrane fouling, sludge characteristics and microbial community structure in a membrane bioreactor(MBR) coupled with worm reactors(SSBWR) were evaluated for 210 days. The obtained results were compared to those from a conventional MBR(C-MBR) operat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental sciences (China) 2017-04, Vol.54 (4), p.246-255
Hauptverfasser: Liu, Jia, Zuo, Wei, Zhang, Jun, Li, Hui, Li, Lipin, Tian, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The chemical oxygen demand(COD) and NH3-N removal, membrane fouling, sludge characteristics and microbial community structure in a membrane bioreactor(MBR) coupled with worm reactors(SSBWR) were evaluated for 210 days. The obtained results were compared to those from a conventional MBR(C-MBR) operated in parallel. The results indicated that the combined MBR(S-MBR) achieved higher COD and NH3-N removal efficiency,slower increase in membrane fouling, better sludge settleability and higher activities of the related enzymes in the activated sludge. Denaturing gradient gel electrophoresis was used to analyze the microbial community structures in the C-MBR and the S-MBR. The microbial community structure in the S-MBR was more diverse than that in the C-MBR. Additionally, the slow-growing microbes such as Saprospiraceae, Actinomyces, Frankia, Clostridium, Comamonas,Pseudomonas, Dechloromonas and Flavobacterium were enriched in the S-MBR, further accounting for the sludge reduction, membrane fouling alleviation and wastewater treatment.
ISSN:1001-0742
1878-7320
DOI:10.1016/j.jes.2016.03.009