Anterior cerebral blood velocity and end-tidal CO2 responses to exercise differ in children and adults

Little is known about the response of the cerebrovasculature to acute exercise in children and how these responses might differ with adults. Therefore, we compared changes in middle cerebral artery blood velocity (MCAVmean), end-tidal Pco2 (PET...), blood pressure, and minute ventilation (Ve) in res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Heart and circulatory physiology 2017-06, Vol.312 (6), p.H1195-H1202
Hauptverfasser: Ellis, Lindsay A, Ainslie, Philip N, Armstrong, Victoria A, Morris, Laura E, Simair, Ryan G, Sletten, Nathan R, Tallon, Christine M, McManus, Ali M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Little is known about the response of the cerebrovasculature to acute exercise in children and how these responses might differ with adults. Therefore, we compared changes in middle cerebral artery blood velocity (MCAVmean), end-tidal Pco2 (PET...), blood pressure, and minute ventilation (Ve) in response to incremental exercise between children and adults. Thirteen children [age: 9 ± 1 (SD) yr] and thirteen sex-matched adults (age: 25 ± 4 yr) completed a maximal exercise test, during which MCAVmean, PET..., and V...e were measured continuously. These variables were measured at rest, at exercise intensities specific to individual ventilatory thresholds, and at maximum. Although MCAVmean was higher at rest in children compared with adults, there were smaller increases in children (1-12%) compared with adults (12-25%) at all exercise intensities. There were alterations in PET... with exercise intensity in an age-dependent manner [F(2.5,54.5) = 7.983, P < 0.001; η2 = 0.266], remaining stable in children with increasing exercise intensity (37-39 mmHg; P > 0.05) until hyperventilation-induced reductions following the respiratory compensation point. In adults, PET... increased with exercise intensity (36-45 mmHg, P < 0.05) until the ventilatory threshold. From the ventilatory threshold to maximum, adults showed a greater hyperventilation-induced hypocapnia than children. These findings show that the relative increase in MCAVmean during exercise was attenuated in children compared with adults. There was also a weaker relationship between MCAVmean and PET... during exercise in children, suggesting that cerebral perfusion may be regulated by different mechanisms during exercise in the child. (ProQuest: ... denotes formulae/symbols omitted.)
ISSN:0363-6135
1522-1539
DOI:10.1152/ajpheart.00034.2017