A Rational Entry to Cyclic Polymers via Selective Cyclization by Self-Assembly and Topology Transformation of Linear Polymers
A simple and effective synthetic route to cyclic polymers has been developed based on the following sequence: (i) selective cyclization of two self-complementary sec-ammonium-containing crown ether monomers to afford [c2] daisy-chain bifunctional initiators, (ii) living polymerization to afford the...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2017-05, Vol.139 (20), p.6791-6794 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A simple and effective synthetic route to cyclic polymers has been developed based on the following sequence: (i) selective cyclization of two self-complementary sec-ammonium-containing crown ether monomers to afford [c2] daisy-chain bifunctional initiators, (ii) living polymerization to afford the corresponding linear polymers, and (iii) a topology transformation of these linear polymers to furnish cyclic polymers. The key step in this sequence is the quantitative cyclization via self-assembly of two crown ether molecules with hydroxyl and sec-ammonium moieties. After the living polymerization, the linear polymers release the daisy-chain assembly to generate a cyclic topology. The specific advantages of the present synthetic protocol, i.e., procedural simplicity and concentration independence, are demonstrated by a gram-scale synthesis. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.7b01151 |