REX1, a Novel Gene Required for DNA Repair

Nucleotide excision repair is a major pathway for repairing UV light-induced DNA damage in most organisms. Using insertional mutagenesis, we isolated a UV-sensitive mutant of Chlamydomonas reinhardtii that is blocked in the excision of cyclobutane pyrimidine dimers. The mutant is also sensitive to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2003-06, Vol.278 (25), p.22574-22577
Hauptverfasser: Cenkci, Belgin, Petersen, Jason L, Small, Gary D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nucleotide excision repair is a major pathway for repairing UV light-induced DNA damage in most organisms. Using insertional mutagenesis, we isolated a UV-sensitive mutant of Chlamydomonas reinhardtii that is blocked in the excision of cyclobutane pyrimidine dimers. The mutant is also sensitive to the alkylating agent, methyl methanesulphonate. We have cloned REX1 , a novel gene that rescues the mutant. The gene is unusual in a eukaryotic organism in that it is predicted to encode two different proteins, a small protein (8.9 kDa) and a larger protein (31.8 kDa). Neither protein is homologous to known DNA repair proteins. Partial complementation is achieved with subclones of the gene encoding only the 8.9-kDa protein. The 8.9-kDa protein has homologues in many organisms including Saccharomyces cerevisiae, Arabidopsis , and humans. The 31.8-kDa protein appears to be less conserved. These findings may be of general importance for DNA repair in other organisms.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M303249200