Comparative studies of long-wave laser-induced breakdown spectroscopy emissions excited at 1.064 µm and eye-safe 1.574 µm

In this work, comparative long-wave infrared (LWIR) laser-induced breakdown spectroscopy (LIBS) emission studies of two excitation sources: conventional 1.064 μm and eye-safe laser wavelength at 1.574 μm were performed to analyze several widely-used inorganic energetic materials such as ammonium and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2017-04, Vol.25 (7), p.7238-7250
Hauptverfasser: Brown, Ei E, Yang, Clayton S-C, Hommerich, Uwe, Jin, Feng, Trivedi, Sudhir B, Samuels, Alan C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, comparative long-wave infrared (LWIR) laser-induced breakdown spectroscopy (LIBS) emission studies of two excitation sources: conventional 1.064 μm and eye-safe laser wavelength at 1.574 μm were performed to analyze several widely-used inorganic energetic materials such as ammonium and potassium compounds as well as the organic liquid chemical warfare agent simulant, dimethyl methylphosphate (DMMP). LWIR LIBS emissions generated by both excitation sources were examined using three different detection systems: a single element liquid nitrogen cooled Mercury Cadmium Telluride (MCT) detector, an MCT linear array detection system with multi-channel preamplifiers + integrators, and an MCT linear array detection system with readout integrated circuit. It was observed that LWIR LIBS studies using an eye-safe pump laser generally reproduced atomic and molecular IR LIBS spectra as previously observed under 1.064 µm laser excitation.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.25.007238