Quantifying plant pigments and live diatoms in aphotic sediments of Scandinavian coastal waters confirms a major route in the pelagic–benthic coupling
The fate of pelagic diatoms in marine coastal aphotic sediments was investigated from sediment profiles in western Scandinavian waters. We used three independent methods to estimate pigment pools in the sediment: (1) fluorometry, (2) high-performance liquid chromatography and (3) pigments estimated...
Gespeichert in:
Veröffentlicht in: | Marine biology 2003-04, Vol.142 (4), p.649-658 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The fate of pelagic diatoms in marine coastal aphotic sediments was investigated from sediment profiles in western Scandinavian waters. We used three independent methods to estimate pigment pools in the sediment: (1) fluorometry, (2) high-performance liquid chromatography and (3) pigments estimated from germinable diatom cells, using the dilution extinction method. A strong positive relationship with an intercept close to zero was observed between fucoxanthin, a marker of diatoms, and chlorophyll a. The fucoxanthin/chl a ratio was on average 1.05, which was similar to monocultures of dominating diatom taxa, indicating that sedimentary chl a was to a large extent of diatom origin. Chl a and fucoxanthin correlated significantly and positively with, and where within the same order of magnitude as, corresponding substances predicted from live diatom cell numbers obtained with the dilution extinction method. This indicates that a major part of surficial sediment chl a was bound in live cells of pelagic diatoms. There was a consistent change in viable cells with sediment depth and with timing of dominating taxa, with the non-spore-forming Skeletonema costatum dominating in the surface sediment in March and May, while the spore forming Chaetoceros spp. dominated deep in the sediment and during periods outside of the spring bloom (February and August). This indicates that chl a is bound in several different cell pools with different degradation rates, depending on diatom taxonomy. Thus, diatoms originating predominantly from the spring bloom may provide an important direct link in the pelagic–benthic coupling in this area. |
---|---|
ISSN: | 0025-3162 1432-1793 |
DOI: | 10.1007/s00227-002-0988-1 |