Interaction and developmental activation of two neuroendocrine systems that regulate light‐mediated skin pigmentation
Summary Lower vertebrates use rapid light‐regulated changes in skin colour for camouflage (background adaptation) or during circadian variation in irradiance levels. Two neuroendocrine systems, the eye/alpha‐melanocyte‐stimulating hormone (α‐MSH) and the pineal complex/melatonin circuits, regulate t...
Gespeichert in:
Veröffentlicht in: | Pigment cell and melanoma research 2017-07, Vol.30 (4), p.413-423 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary
Lower vertebrates use rapid light‐regulated changes in skin colour for camouflage (background adaptation) or during circadian variation in irradiance levels. Two neuroendocrine systems, the eye/alpha‐melanocyte‐stimulating hormone (α‐MSH) and the pineal complex/melatonin circuits, regulate the process through their respective dispersion and aggregation of pigment granules (melanosomes) in skin melanophores. During development, Xenopus laevis tadpoles raised on a black background or in the dark perceive less light sensed by the eye and darken in response to increased α‐MSH secretion. As embryogenesis proceeds, the pineal complex/melatonin circuit becomes the dominant regulator in the dark and induces lightening of the skin of larvae. The eye/α‐MSH circuit continues to mediate darkening of embryos on a black background, but we propose the circuit is shut down in complete darkness in part by melatonin acting on receptors expressed by pituitary cells to inhibit the expression of pomc, the precursor of α‐MSH. |
---|---|
ISSN: | 1755-1471 1755-148X |
DOI: | 10.1111/pcmr.12589 |