Laser-Induced Breakdown Spectroscopy for the Rapid Characterization of Lead-Free Gunshot Residues

This study investigated the use of laser-induced breakdown spectroscopy (LIBS) and scanning electron microscopy energy dispersive X-ray spectroscopy (SEM-EDX) as means of characterizing gunshot residue (GSR) originating from commercially available lead-free rounds. Data from two experiments are pres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied spectroscopy 2017-04, Vol.71 (4), p.699-708
Hauptverfasser: Fambro, Lashaundra A., Vandenbos, Deidre D., Rosenberg, Matthew B., Dockery, Christopher R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study investigated the use of laser-induced breakdown spectroscopy (LIBS) and scanning electron microscopy energy dispersive X-ray spectroscopy (SEM-EDX) as means of characterizing gunshot residue (GSR) originating from commercially available lead-free rounds. Data from two experiments are presented in this work. One experiment focused on identifying prominent analytical markers present in lead-free GSR by LIBS while the other applied SEM-EDX to determine the degree of evidence preservation after LIBS analysis. Samples of GSR were collected via tape-lift method from the hands of volunteer shooters and instrumental analyses were conducted in triplicate. As a result, the lead-free ammunition analyzed in this work generated GSRs comprising primarily Ba, Al, Si, and/or K. Trace amounts of Ti, Fe, and S were also apparent in some compositions. Through SEM-EDX analysis, a spheroidal geometry consistent with traditional lead-containing GSR was observed. Additionally, it was determined that evidence is preserved after LIBS analysis which supports the implementation of LIBS as a rapid preliminary screening method followed by confirmatory testing via SEM-EDX on the preserved evidence.
ISSN:0003-7028
1943-3530
DOI:10.1177/0003702816689099