On solving L-SR1 trust-region subproblems
In this article, we consider solvers for large-scale trust-region subproblems when the quadratic model is defined by a limited-memory symmetric rank-one (L-SR1) quasi-Newton matrix. We propose a solver that exploits the compact representation of L-SR1 matrices. Our approach makes use of both an orth...
Gespeichert in:
Veröffentlicht in: | Computational optimization and applications 2017-03, Vol.66 (2), p.245-266 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we consider solvers for large-scale trust-region subproblems when the quadratic model is defined by a limited-memory symmetric rank-one (L-SR1) quasi-Newton matrix. We propose a solver that exploits the compact representation of L-SR1 matrices. Our approach makes use of both an orthonormal basis for the eigenspace of the L-SR1 matrix and the Sherman–Morrison–Woodbury formula to compute global solutions to trust-region subproblems. To compute the optimal Lagrange multiplier for the trust-region constraint, we use Newton’s method with a judicious initial guess that does not require safeguarding. A crucial property of this solver is that it is able to compute high-accuracy solutions even in the so-called
hard case
. Additionally, the optimal solution is determined directly by formula, not iteratively. Numerical experiments demonstrate the effectiveness of this solver. |
---|---|
ISSN: | 0926-6003 1573-2894 |
DOI: | 10.1007/s10589-016-9868-3 |