Non-linear optimal multivariate spatial design using spatial vine copulas

A multivariate spatial sampling design that uses spatial vine copulas is presented that aims to simultaneously reduce the prediction uncertainty of multiple variables by selecting additional sampling locations based on the multivariate relationship between variables, the spatial configuration of exi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastic environmental research and risk assessment 2017-02, Vol.31 (2), p.551-570
Hauptverfasser: Musafer, G. Nishani, Thompson, M. Helen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A multivariate spatial sampling design that uses spatial vine copulas is presented that aims to simultaneously reduce the prediction uncertainty of multiple variables by selecting additional sampling locations based on the multivariate relationship between variables, the spatial configuration of existing locations and the values of the observations at those locations. Novel aspects of the methodology include the development of optimal designs that use spatial vine copulas to estimate prediction uncertainty and, additionally, use transformation methods for dimension reduction to model multivariate spatial dependence. Spatial vine copulas capture non-linear spatial dependence within variables, whilst a chained transformation that uses non-linear principal component analysis captures the non-linear multivariate dependence between variables. The proposed design methodology is applied to two environmental case studies. Performance of the proposed methodology is evaluated through partial redesigns of the original spatial designs. The first application is a soil contamination example that demonstrates the ability of the proposed methodology to address spatial non-linearity in the data. The second application is a forest biomass study that highlights the strength of the methodology in incorporating non-linear multivariate dependence into the design.
ISSN:1436-3240
1436-3259
DOI:10.1007/s00477-016-1307-6