Seismic Response of Long-Span Triple-Tower Suspension Bridge under Random Ground Motion

Multitower suspension bridge is of different style compared to the traditional suspension bridge with two towers, and consequently the dissimilarity of static and dynamic behaviors is distinct. As a special case of multitower suspension bridge, two long-span triple-tower suspension bridges have been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2017-01, Vol.2017 (2017), p.1-16
Hauptverfasser: Zhou, Guang-Dong, Li, Aiqun, Dong, Xin, Jiao, Chang-ke, Wu, Xiao-ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multitower suspension bridge is of different style compared to the traditional suspension bridge with two towers, and consequently the dissimilarity of static and dynamic behaviors is distinct. As a special case of multitower suspension bridge, two long-span triple-tower suspension bridges have been constructed in China and the seismic random response of triple-tower suspension bridges is studied in this paper. A nonlinear dynamic analysis finite element model is established in ABAQUS and the Python language is utilized to facilitate the preprocess and postprocess during the finite element analysis. The procedure for random response calculation of structures based on the pseudoexcitation method is presented, with the initial equilibrium state of structure considered, which may be ignored for long-span bridges during calculating of stochastic response. The stationary seismic random responses of triple-tower suspension bridge under uniform excitation in firm, medium, and soft soil conditions and under spatially varying excitation in soft soil are investigated. The distribution of RMS of random responses of displacements and internal forces of the stiffening girder and towers is presented and discussed in detail. Results show that spatially variable ground motions should be considered in the stochastic analysis of triple-tower suspension bridge.
ISSN:1024-123X
1563-5147
DOI:10.1155/2017/3457452