A Potential Enstrophy and Energy Conserving Scheme for the Shallow-Water Equations Extended to Generalized Curvilinear Coordinates

An energy and potential enstrophy conserving finite-difference scheme for the shallow-water equations is derived in generalized curvilinear coordinates. This is an extension of a scheme formulated by Arakawa and Lamb for orthogonal coordinate systems. The starting point for the present scheme is the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly weather review 2017-03, Vol.145 (3), p.751-772
Hauptverfasser: Toy, Michael D, Nair, Ramachandran D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An energy and potential enstrophy conserving finite-difference scheme for the shallow-water equations is derived in generalized curvilinear coordinates. This is an extension of a scheme formulated by Arakawa and Lamb for orthogonal coordinate systems. The starting point for the present scheme is the shallow-water equations cast in generalized curvilinear coordinates, and tensor analysis is used to derive the invariant conservation properties. Preliminary tests on a flat plane with doubly periodic boundary conditions are presented. The scheme is shown to possess similar order-of-convergence error characteristics using a nonorthogonal coordinate compared to Cartesian coordinates for a nonlinear test of flow over an isolated mountain. A linear normal mode analysis shows that the discrete form of the Coriolis term provides stationary geostrophically balanced modes for the nonorthogonal coordinate and no unphysical computational modes are introduced. The scheme uses centered differences and averages, which are formally second-order accurate. An empirical test with a steady geostrophically balanced flow shows that the convergence rate of the truncation errors of the discrete operators is second order. The next step will be to adapt the scheme for use on the cubed sphere, which will involve modification at the lateral boundaries of the cube faces.
ISSN:0027-0644
1520-0493
DOI:10.1175/MWR-D-16-0250.1