The Influence of Successive Thermals on Entrainment and Dilution in a Simulated Cumulus Congestus

Cumulus clouds are frequently observed as comprising multiple successive thermals, yet numerical simulations of entrainment have not investigated this level of detail. Here, an idealized simulated cumulus congestus consisting of three successive thermals is used to analyze and understand their role...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the atmospheric sciences 2017-02, Vol.74 (2), p.375-392
Hauptverfasser: Moser, Daniel H, Lasher-Trapp, Sonia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cumulus clouds are frequently observed as comprising multiple successive thermals, yet numerical simulations of entrainment have not investigated this level of detail. Here, an idealized simulated cumulus congestus consisting of three successive thermals is used to analyze and understand their role in maintaining the high liquid water content in the core of the cloud, which past 1D modeling studies have suggested can ultimately determine its ability to precipitate. Entrainment and detrainment are calculated directly at the edge of the cloud core at frequent time intervals. Entrainment maxima occur at the rear of the toroidal circulation associated with each thermal and thus are transient features in the lifetime of multithermal clouds. The evolution of the least diluted parcels within each thermal shows that the entrainment rates alone cannot predict the erosion of the high liquid water content cores. A novel analysis of samples of entrained and detrained air within each successive thermal illustrates tendencies for even positively buoyant air, containing condensate, to be entrained by later thermals that rise in the wakes of their predecessors, limiting their dilution. The later thermals can achieve greater depths and produce precipitation when a single thermal could not. Future work is yet needed to evaluate the generality of these results using multiple clouds simulated in different environments with less-idealized modeling frameworks. Implications for current cumulus parameterizations are briefly discussed.
ISSN:0022-4928
1520-0469
DOI:10.1175/JAS-D-16-0144.1