Strongly exchange-coupled triplet pairs in an organic semiconductor

From biological complexes to devices based on organic semiconductors, spin interactions play a key role in the function of molecular systems. For instance, triplet-pair reactions impact operation of organic light-emitting diodes as well as photovoltaic devices. Conventional models for triplet pairs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2017-02, Vol.13 (2), p.176-181
Hauptverfasser: Weiss, Leah R., Bayliss, Sam L., Kraffert, Felix, Thorley, Karl J., Anthony, John E., Bittl, Robert, Friend, Richard H., Rao, Akshay, Greenham, Neil C., Behrends, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 181
container_issue 2
container_start_page 176
container_title Nature physics
container_volume 13
creator Weiss, Leah R.
Bayliss, Sam L.
Kraffert, Felix
Thorley, Karl J.
Anthony, John E.
Bittl, Robert
Friend, Richard H.
Rao, Akshay
Greenham, Neil C.
Behrends, Jan
description From biological complexes to devices based on organic semiconductors, spin interactions play a key role in the function of molecular systems. For instance, triplet-pair reactions impact operation of organic light-emitting diodes as well as photovoltaic devices. Conventional models for triplet pairs assume they interact only weakly. Here, using electron spin resonance, we observe long-lived, strongly interacting triplet pairs in an organic semiconductor, generated via singlet fission. Using coherent spin manipulation of these two-triplet states, we identify exchange-coupled (spin-2) quintet complexes coexisting with weakly coupled (spin-1) triplets. We measure strongly coupled pairs with a lifetime approaching 3 μs and a spin coherence time approaching 1 μs, at 10 K. Our results pave the way for the utilization of high-spin systems in organic semiconductors. Experiments show how molecular structure affects the interaction and dynamics of the triplet exciton pairs produced when an excited singlet exciton decays via singlet fission — a process that could be harnessed for optoelectronic applications.
doi_str_mv 10.1038/nphys3908
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884124962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4311960831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-21e7dc9a1c1b5027478ea662d8a6b5339858ebdcb97c49bf2de13c22c5a9c99f3</originalsourceid><addsrcrecordid>eNpl0E1LAzEQBuAgCtbqwX8Q8KLC6uZjN8lRSv2Aggf1vGRns23KNlmTXbD_3pRKET3NHB7eGV6ELkl-R3Im712_2kamcnmEJkTwIqNckuPDLtgpOotxneecloRN0OxtCN4tuy02X7DSbmky8GPfmQYPwaY54F7bELF1WDvsw1I7CziajQXvmhEGH87RSau7aC5-5hR9PM7fZ8_Z4vXpZfawyCAdGzJKjGhAaQKkLnIquJBGlyVtpC7rgjElC2nqBmolgKu6pY0hDCiFQitQqmVTdL3P7YP_HE0cqo2NYLpOO-PHWBEpOaFclTTRqz907cfg0ndJlZwrKsRO3ewVBB9jMG3VB7vRYVuRvNrVWR3qTPZ2b2MyqabwK_Ef_gbQ8Xdi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864492772</pqid></control><display><type>article</type><title>Strongly exchange-coupled triplet pairs in an organic semiconductor</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Weiss, Leah R. ; Bayliss, Sam L. ; Kraffert, Felix ; Thorley, Karl J. ; Anthony, John E. ; Bittl, Robert ; Friend, Richard H. ; Rao, Akshay ; Greenham, Neil C. ; Behrends, Jan</creator><creatorcontrib>Weiss, Leah R. ; Bayliss, Sam L. ; Kraffert, Felix ; Thorley, Karl J. ; Anthony, John E. ; Bittl, Robert ; Friend, Richard H. ; Rao, Akshay ; Greenham, Neil C. ; Behrends, Jan</creatorcontrib><description>From biological complexes to devices based on organic semiconductors, spin interactions play a key role in the function of molecular systems. For instance, triplet-pair reactions impact operation of organic light-emitting diodes as well as photovoltaic devices. Conventional models for triplet pairs assume they interact only weakly. Here, using electron spin resonance, we observe long-lived, strongly interacting triplet pairs in an organic semiconductor, generated via singlet fission. Using coherent spin manipulation of these two-triplet states, we identify exchange-coupled (spin-2) quintet complexes coexisting with weakly coupled (spin-1) triplets. We measure strongly coupled pairs with a lifetime approaching 3 μs and a spin coherence time approaching 1 μs, at 10 K. Our results pave the way for the utilization of high-spin systems in organic semiconductors. Experiments show how molecular structure affects the interaction and dynamics of the triplet exciton pairs produced when an excited singlet exciton decays via singlet fission — a process that could be harnessed for optoelectronic applications.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys3908</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/1130/2798 ; 639/766/119/998 ; 639/766/94 ; Atomic ; Classical and Continuum Physics ; Coherence ; Complex Systems ; Condensed Matter Physics ; Devices ; Electron paramagnetic resonance ; Electron spin ; Electron spin resonance ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Organic semiconductors ; Photovoltaics ; Physics ; Resonance ; Semiconductors ; Theoretical ; Time measurement ; Utilization</subject><ispartof>Nature physics, 2017-02, Vol.13 (2), p.176-181</ispartof><rights>Springer Nature Limited 2016</rights><rights>Copyright Nature Publishing Group Feb 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-21e7dc9a1c1b5027478ea662d8a6b5339858ebdcb97c49bf2de13c22c5a9c99f3</citedby><cites>FETCH-LOGICAL-c426t-21e7dc9a1c1b5027478ea662d8a6b5339858ebdcb97c49bf2de13c22c5a9c99f3</cites><orcidid>0000-0003-0320-2962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys3908$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys3908$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Weiss, Leah R.</creatorcontrib><creatorcontrib>Bayliss, Sam L.</creatorcontrib><creatorcontrib>Kraffert, Felix</creatorcontrib><creatorcontrib>Thorley, Karl J.</creatorcontrib><creatorcontrib>Anthony, John E.</creatorcontrib><creatorcontrib>Bittl, Robert</creatorcontrib><creatorcontrib>Friend, Richard H.</creatorcontrib><creatorcontrib>Rao, Akshay</creatorcontrib><creatorcontrib>Greenham, Neil C.</creatorcontrib><creatorcontrib>Behrends, Jan</creatorcontrib><title>Strongly exchange-coupled triplet pairs in an organic semiconductor</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>From biological complexes to devices based on organic semiconductors, spin interactions play a key role in the function of molecular systems. For instance, triplet-pair reactions impact operation of organic light-emitting diodes as well as photovoltaic devices. Conventional models for triplet pairs assume they interact only weakly. Here, using electron spin resonance, we observe long-lived, strongly interacting triplet pairs in an organic semiconductor, generated via singlet fission. Using coherent spin manipulation of these two-triplet states, we identify exchange-coupled (spin-2) quintet complexes coexisting with weakly coupled (spin-1) triplets. We measure strongly coupled pairs with a lifetime approaching 3 μs and a spin coherence time approaching 1 μs, at 10 K. Our results pave the way for the utilization of high-spin systems in organic semiconductors. Experiments show how molecular structure affects the interaction and dynamics of the triplet exciton pairs produced when an excited singlet exciton decays via singlet fission — a process that could be harnessed for optoelectronic applications.</description><subject>639/766/1130/2798</subject><subject>639/766/119/998</subject><subject>639/766/94</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Coherence</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Devices</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin</subject><subject>Electron spin resonance</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Organic semiconductors</subject><subject>Photovoltaics</subject><subject>Physics</subject><subject>Resonance</subject><subject>Semiconductors</subject><subject>Theoretical</subject><subject>Time measurement</subject><subject>Utilization</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpl0E1LAzEQBuAgCtbqwX8Q8KLC6uZjN8lRSv2Aggf1vGRns23KNlmTXbD_3pRKET3NHB7eGV6ELkl-R3Im712_2kamcnmEJkTwIqNckuPDLtgpOotxneecloRN0OxtCN4tuy02X7DSbmky8GPfmQYPwaY54F7bELF1WDvsw1I7CziajQXvmhEGH87RSau7aC5-5hR9PM7fZ8_Z4vXpZfawyCAdGzJKjGhAaQKkLnIquJBGlyVtpC7rgjElC2nqBmolgKu6pY0hDCiFQitQqmVTdL3P7YP_HE0cqo2NYLpOO-PHWBEpOaFclTTRqz907cfg0ndJlZwrKsRO3ewVBB9jMG3VB7vRYVuRvNrVWR3qTPZ2b2MyqabwK_Ef_gbQ8Xdi</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Weiss, Leah R.</creator><creator>Bayliss, Sam L.</creator><creator>Kraffert, Felix</creator><creator>Thorley, Karl J.</creator><creator>Anthony, John E.</creator><creator>Bittl, Robert</creator><creator>Friend, Richard H.</creator><creator>Rao, Akshay</creator><creator>Greenham, Neil C.</creator><creator>Behrends, Jan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0320-2962</orcidid></search><sort><creationdate>20170201</creationdate><title>Strongly exchange-coupled triplet pairs in an organic semiconductor</title><author>Weiss, Leah R. ; Bayliss, Sam L. ; Kraffert, Felix ; Thorley, Karl J. ; Anthony, John E. ; Bittl, Robert ; Friend, Richard H. ; Rao, Akshay ; Greenham, Neil C. ; Behrends, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-21e7dc9a1c1b5027478ea662d8a6b5339858ebdcb97c49bf2de13c22c5a9c99f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/766/1130/2798</topic><topic>639/766/119/998</topic><topic>639/766/94</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Coherence</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Devices</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin</topic><topic>Electron spin resonance</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Organic semiconductors</topic><topic>Photovoltaics</topic><topic>Physics</topic><topic>Resonance</topic><topic>Semiconductors</topic><topic>Theoretical</topic><topic>Time measurement</topic><topic>Utilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weiss, Leah R.</creatorcontrib><creatorcontrib>Bayliss, Sam L.</creatorcontrib><creatorcontrib>Kraffert, Felix</creatorcontrib><creatorcontrib>Thorley, Karl J.</creatorcontrib><creatorcontrib>Anthony, John E.</creatorcontrib><creatorcontrib>Bittl, Robert</creatorcontrib><creatorcontrib>Friend, Richard H.</creatorcontrib><creatorcontrib>Rao, Akshay</creatorcontrib><creatorcontrib>Greenham, Neil C.</creatorcontrib><creatorcontrib>Behrends, Jan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weiss, Leah R.</au><au>Bayliss, Sam L.</au><au>Kraffert, Felix</au><au>Thorley, Karl J.</au><au>Anthony, John E.</au><au>Bittl, Robert</au><au>Friend, Richard H.</au><au>Rao, Akshay</au><au>Greenham, Neil C.</au><au>Behrends, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strongly exchange-coupled triplet pairs in an organic semiconductor</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>13</volume><issue>2</issue><spage>176</spage><epage>181</epage><pages>176-181</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>From biological complexes to devices based on organic semiconductors, spin interactions play a key role in the function of molecular systems. For instance, triplet-pair reactions impact operation of organic light-emitting diodes as well as photovoltaic devices. Conventional models for triplet pairs assume they interact only weakly. Here, using electron spin resonance, we observe long-lived, strongly interacting triplet pairs in an organic semiconductor, generated via singlet fission. Using coherent spin manipulation of these two-triplet states, we identify exchange-coupled (spin-2) quintet complexes coexisting with weakly coupled (spin-1) triplets. We measure strongly coupled pairs with a lifetime approaching 3 μs and a spin coherence time approaching 1 μs, at 10 K. Our results pave the way for the utilization of high-spin systems in organic semiconductors. Experiments show how molecular structure affects the interaction and dynamics of the triplet exciton pairs produced when an excited singlet exciton decays via singlet fission — a process that could be harnessed for optoelectronic applications.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys3908</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0320-2962</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2017-02, Vol.13 (2), p.176-181
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_miscellaneous_1884124962
source SpringerLink Journals; Nature Journals Online
subjects 639/766/1130/2798
639/766/119/998
639/766/94
Atomic
Classical and Continuum Physics
Coherence
Complex Systems
Condensed Matter Physics
Devices
Electron paramagnetic resonance
Electron spin
Electron spin resonance
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Organic semiconductors
Photovoltaics
Physics
Resonance
Semiconductors
Theoretical
Time measurement
Utilization
title Strongly exchange-coupled triplet pairs in an organic semiconductor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A38%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strongly%20exchange-coupled%20triplet%20pairs%20in%20an%20organic%20semiconductor&rft.jtitle=Nature%20physics&rft.au=Weiss,%20Leah%20R.&rft.date=2017-02-01&rft.volume=13&rft.issue=2&rft.spage=176&rft.epage=181&rft.pages=176-181&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys3908&rft_dat=%3Cproquest_cross%3E4311960831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1864492772&rft_id=info:pmid/&rfr_iscdi=true