Strongly exchange-coupled triplet pairs in an organic semiconductor
From biological complexes to devices based on organic semiconductors, spin interactions play a key role in the function of molecular systems. For instance, triplet-pair reactions impact operation of organic light-emitting diodes as well as photovoltaic devices. Conventional models for triplet pairs...
Gespeichert in:
Veröffentlicht in: | Nature physics 2017-02, Vol.13 (2), p.176-181 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 181 |
---|---|
container_issue | 2 |
container_start_page | 176 |
container_title | Nature physics |
container_volume | 13 |
creator | Weiss, Leah R. Bayliss, Sam L. Kraffert, Felix Thorley, Karl J. Anthony, John E. Bittl, Robert Friend, Richard H. Rao, Akshay Greenham, Neil C. Behrends, Jan |
description | From biological complexes to devices based on organic semiconductors, spin interactions play a key role in the function of molecular systems. For instance, triplet-pair reactions impact operation of organic light-emitting diodes as well as photovoltaic devices. Conventional models for triplet pairs assume they interact only weakly. Here, using electron spin resonance, we observe long-lived, strongly interacting triplet pairs in an organic semiconductor, generated via singlet fission. Using coherent spin manipulation of these two-triplet states, we identify exchange-coupled (spin-2) quintet complexes coexisting with weakly coupled (spin-1) triplets. We measure strongly coupled pairs with a lifetime approaching 3 μs and a spin coherence time approaching 1 μs, at 10 K. Our results pave the way for the utilization of high-spin systems in organic semiconductors.
Experiments show how molecular structure affects the interaction and dynamics of the triplet exciton pairs produced when an excited singlet exciton decays via singlet fission — a process that could be harnessed for optoelectronic applications. |
doi_str_mv | 10.1038/nphys3908 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884124962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4311960831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-21e7dc9a1c1b5027478ea662d8a6b5339858ebdcb97c49bf2de13c22c5a9c99f3</originalsourceid><addsrcrecordid>eNpl0E1LAzEQBuAgCtbqwX8Q8KLC6uZjN8lRSv2Aggf1vGRns23KNlmTXbD_3pRKET3NHB7eGV6ELkl-R3Im712_2kamcnmEJkTwIqNckuPDLtgpOotxneecloRN0OxtCN4tuy02X7DSbmky8GPfmQYPwaY54F7bELF1WDvsw1I7CziajQXvmhEGH87RSau7aC5-5hR9PM7fZ8_Z4vXpZfawyCAdGzJKjGhAaQKkLnIquJBGlyVtpC7rgjElC2nqBmolgKu6pY0hDCiFQitQqmVTdL3P7YP_HE0cqo2NYLpOO-PHWBEpOaFclTTRqz907cfg0ndJlZwrKsRO3ewVBB9jMG3VB7vRYVuRvNrVWR3qTPZ2b2MyqabwK_Ef_gbQ8Xdi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864492772</pqid></control><display><type>article</type><title>Strongly exchange-coupled triplet pairs in an organic semiconductor</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Weiss, Leah R. ; Bayliss, Sam L. ; Kraffert, Felix ; Thorley, Karl J. ; Anthony, John E. ; Bittl, Robert ; Friend, Richard H. ; Rao, Akshay ; Greenham, Neil C. ; Behrends, Jan</creator><creatorcontrib>Weiss, Leah R. ; Bayliss, Sam L. ; Kraffert, Felix ; Thorley, Karl J. ; Anthony, John E. ; Bittl, Robert ; Friend, Richard H. ; Rao, Akshay ; Greenham, Neil C. ; Behrends, Jan</creatorcontrib><description>From biological complexes to devices based on organic semiconductors, spin interactions play a key role in the function of molecular systems. For instance, triplet-pair reactions impact operation of organic light-emitting diodes as well as photovoltaic devices. Conventional models for triplet pairs assume they interact only weakly. Here, using electron spin resonance, we observe long-lived, strongly interacting triplet pairs in an organic semiconductor, generated via singlet fission. Using coherent spin manipulation of these two-triplet states, we identify exchange-coupled (spin-2) quintet complexes coexisting with weakly coupled (spin-1) triplets. We measure strongly coupled pairs with a lifetime approaching 3 μs and a spin coherence time approaching 1 μs, at 10 K. Our results pave the way for the utilization of high-spin systems in organic semiconductors.
Experiments show how molecular structure affects the interaction and dynamics of the triplet exciton pairs produced when an excited singlet exciton decays via singlet fission — a process that could be harnessed for optoelectronic applications.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys3908</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/1130/2798 ; 639/766/119/998 ; 639/766/94 ; Atomic ; Classical and Continuum Physics ; Coherence ; Complex Systems ; Condensed Matter Physics ; Devices ; Electron paramagnetic resonance ; Electron spin ; Electron spin resonance ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Organic semiconductors ; Photovoltaics ; Physics ; Resonance ; Semiconductors ; Theoretical ; Time measurement ; Utilization</subject><ispartof>Nature physics, 2017-02, Vol.13 (2), p.176-181</ispartof><rights>Springer Nature Limited 2016</rights><rights>Copyright Nature Publishing Group Feb 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-21e7dc9a1c1b5027478ea662d8a6b5339858ebdcb97c49bf2de13c22c5a9c99f3</citedby><cites>FETCH-LOGICAL-c426t-21e7dc9a1c1b5027478ea662d8a6b5339858ebdcb97c49bf2de13c22c5a9c99f3</cites><orcidid>0000-0003-0320-2962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys3908$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys3908$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Weiss, Leah R.</creatorcontrib><creatorcontrib>Bayliss, Sam L.</creatorcontrib><creatorcontrib>Kraffert, Felix</creatorcontrib><creatorcontrib>Thorley, Karl J.</creatorcontrib><creatorcontrib>Anthony, John E.</creatorcontrib><creatorcontrib>Bittl, Robert</creatorcontrib><creatorcontrib>Friend, Richard H.</creatorcontrib><creatorcontrib>Rao, Akshay</creatorcontrib><creatorcontrib>Greenham, Neil C.</creatorcontrib><creatorcontrib>Behrends, Jan</creatorcontrib><title>Strongly exchange-coupled triplet pairs in an organic semiconductor</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>From biological complexes to devices based on organic semiconductors, spin interactions play a key role in the function of molecular systems. For instance, triplet-pair reactions impact operation of organic light-emitting diodes as well as photovoltaic devices. Conventional models for triplet pairs assume they interact only weakly. Here, using electron spin resonance, we observe long-lived, strongly interacting triplet pairs in an organic semiconductor, generated via singlet fission. Using coherent spin manipulation of these two-triplet states, we identify exchange-coupled (spin-2) quintet complexes coexisting with weakly coupled (spin-1) triplets. We measure strongly coupled pairs with a lifetime approaching 3 μs and a spin coherence time approaching 1 μs, at 10 K. Our results pave the way for the utilization of high-spin systems in organic semiconductors.
Experiments show how molecular structure affects the interaction and dynamics of the triplet exciton pairs produced when an excited singlet exciton decays via singlet fission — a process that could be harnessed for optoelectronic applications.</description><subject>639/766/1130/2798</subject><subject>639/766/119/998</subject><subject>639/766/94</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Coherence</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Devices</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin</subject><subject>Electron spin resonance</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Organic semiconductors</subject><subject>Photovoltaics</subject><subject>Physics</subject><subject>Resonance</subject><subject>Semiconductors</subject><subject>Theoretical</subject><subject>Time measurement</subject><subject>Utilization</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpl0E1LAzEQBuAgCtbqwX8Q8KLC6uZjN8lRSv2Aggf1vGRns23KNlmTXbD_3pRKET3NHB7eGV6ELkl-R3Im712_2kamcnmEJkTwIqNckuPDLtgpOotxneecloRN0OxtCN4tuy02X7DSbmky8GPfmQYPwaY54F7bELF1WDvsw1I7CziajQXvmhEGH87RSau7aC5-5hR9PM7fZ8_Z4vXpZfawyCAdGzJKjGhAaQKkLnIquJBGlyVtpC7rgjElC2nqBmolgKu6pY0hDCiFQitQqmVTdL3P7YP_HE0cqo2NYLpOO-PHWBEpOaFclTTRqz907cfg0ndJlZwrKsRO3ewVBB9jMG3VB7vRYVuRvNrVWR3qTPZ2b2MyqabwK_Ef_gbQ8Xdi</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Weiss, Leah R.</creator><creator>Bayliss, Sam L.</creator><creator>Kraffert, Felix</creator><creator>Thorley, Karl J.</creator><creator>Anthony, John E.</creator><creator>Bittl, Robert</creator><creator>Friend, Richard H.</creator><creator>Rao, Akshay</creator><creator>Greenham, Neil C.</creator><creator>Behrends, Jan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0320-2962</orcidid></search><sort><creationdate>20170201</creationdate><title>Strongly exchange-coupled triplet pairs in an organic semiconductor</title><author>Weiss, Leah R. ; Bayliss, Sam L. ; Kraffert, Felix ; Thorley, Karl J. ; Anthony, John E. ; Bittl, Robert ; Friend, Richard H. ; Rao, Akshay ; Greenham, Neil C. ; Behrends, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-21e7dc9a1c1b5027478ea662d8a6b5339858ebdcb97c49bf2de13c22c5a9c99f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/766/1130/2798</topic><topic>639/766/119/998</topic><topic>639/766/94</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Coherence</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Devices</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin</topic><topic>Electron spin resonance</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Organic semiconductors</topic><topic>Photovoltaics</topic><topic>Physics</topic><topic>Resonance</topic><topic>Semiconductors</topic><topic>Theoretical</topic><topic>Time measurement</topic><topic>Utilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weiss, Leah R.</creatorcontrib><creatorcontrib>Bayliss, Sam L.</creatorcontrib><creatorcontrib>Kraffert, Felix</creatorcontrib><creatorcontrib>Thorley, Karl J.</creatorcontrib><creatorcontrib>Anthony, John E.</creatorcontrib><creatorcontrib>Bittl, Robert</creatorcontrib><creatorcontrib>Friend, Richard H.</creatorcontrib><creatorcontrib>Rao, Akshay</creatorcontrib><creatorcontrib>Greenham, Neil C.</creatorcontrib><creatorcontrib>Behrends, Jan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weiss, Leah R.</au><au>Bayliss, Sam L.</au><au>Kraffert, Felix</au><au>Thorley, Karl J.</au><au>Anthony, John E.</au><au>Bittl, Robert</au><au>Friend, Richard H.</au><au>Rao, Akshay</au><au>Greenham, Neil C.</au><au>Behrends, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strongly exchange-coupled triplet pairs in an organic semiconductor</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>13</volume><issue>2</issue><spage>176</spage><epage>181</epage><pages>176-181</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>From biological complexes to devices based on organic semiconductors, spin interactions play a key role in the function of molecular systems. For instance, triplet-pair reactions impact operation of organic light-emitting diodes as well as photovoltaic devices. Conventional models for triplet pairs assume they interact only weakly. Here, using electron spin resonance, we observe long-lived, strongly interacting triplet pairs in an organic semiconductor, generated via singlet fission. Using coherent spin manipulation of these two-triplet states, we identify exchange-coupled (spin-2) quintet complexes coexisting with weakly coupled (spin-1) triplets. We measure strongly coupled pairs with a lifetime approaching 3 μs and a spin coherence time approaching 1 μs, at 10 K. Our results pave the way for the utilization of high-spin systems in organic semiconductors.
Experiments show how molecular structure affects the interaction and dynamics of the triplet exciton pairs produced when an excited singlet exciton decays via singlet fission — a process that could be harnessed for optoelectronic applications.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys3908</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0320-2962</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2017-02, Vol.13 (2), p.176-181 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884124962 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 639/766/1130/2798 639/766/119/998 639/766/94 Atomic Classical and Continuum Physics Coherence Complex Systems Condensed Matter Physics Devices Electron paramagnetic resonance Electron spin Electron spin resonance Mathematical and Computational Physics Molecular Optical and Plasma Physics Organic semiconductors Photovoltaics Physics Resonance Semiconductors Theoretical Time measurement Utilization |
title | Strongly exchange-coupled triplet pairs in an organic semiconductor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A38%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strongly%20exchange-coupled%20triplet%20pairs%20in%20an%20organic%20semiconductor&rft.jtitle=Nature%20physics&rft.au=Weiss,%20Leah%20R.&rft.date=2017-02-01&rft.volume=13&rft.issue=2&rft.spage=176&rft.epage=181&rft.pages=176-181&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys3908&rft_dat=%3Cproquest_cross%3E4311960831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1864492772&rft_id=info:pmid/&rfr_iscdi=true |