Strongly exchange-coupled triplet pairs in an organic semiconductor

From biological complexes to devices based on organic semiconductors, spin interactions play a key role in the function of molecular systems. For instance, triplet-pair reactions impact operation of organic light-emitting diodes as well as photovoltaic devices. Conventional models for triplet pairs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2017-02, Vol.13 (2), p.176-181
Hauptverfasser: Weiss, Leah R., Bayliss, Sam L., Kraffert, Felix, Thorley, Karl J., Anthony, John E., Bittl, Robert, Friend, Richard H., Rao, Akshay, Greenham, Neil C., Behrends, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:From biological complexes to devices based on organic semiconductors, spin interactions play a key role in the function of molecular systems. For instance, triplet-pair reactions impact operation of organic light-emitting diodes as well as photovoltaic devices. Conventional models for triplet pairs assume they interact only weakly. Here, using electron spin resonance, we observe long-lived, strongly interacting triplet pairs in an organic semiconductor, generated via singlet fission. Using coherent spin manipulation of these two-triplet states, we identify exchange-coupled (spin-2) quintet complexes coexisting with weakly coupled (spin-1) triplets. We measure strongly coupled pairs with a lifetime approaching 3 μs and a spin coherence time approaching 1 μs, at 10 K. Our results pave the way for the utilization of high-spin systems in organic semiconductors. Experiments show how molecular structure affects the interaction and dynamics of the triplet exciton pairs produced when an excited singlet exciton decays via singlet fission — a process that could be harnessed for optoelectronic applications.
ISSN:1745-2473
1745-2481
DOI:10.1038/nphys3908