Improving Radar Refractivity Retrieval by Considering the Change in the Refractivity Profile and the Varying Altitudes of Ground Targets

Accurate radar refractivity retrievals are critical for quantitative applications, such as assimilating refractivity into numerical models or studying boundary layer and convection processes. However, the technique as originally developed makes some simplistic assumptions about the heights of ground...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of atmospheric and oceanic technology 2016-05, Vol.33 (5), p.989-1004
Hauptverfasser: Feng, Ya-Chien, Fabry, Frederic, Weckwerth, Tammy M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate radar refractivity retrievals are critical for quantitative applications, such as assimilating refractivity into numerical models or studying boundary layer and convection processes. However, the technique as originally developed makes some simplistic assumptions about the heights of ground targets () and the vertical gradient of refractivity (). In reality, the field of target phases used for refractivity retrieval is noisy because of varying terrain and introduces estimation biases. To obtain a refractivity map at a constant height above terrain, a 2D horizontal refractivity field at the radar height must be computed and corrected for altitude using an average . This is achieved by theoretically clarifying the interpretation of the measured phase considering the varying and the temporal change of . Evolving causes systematic refractivity biases, as it affects the beam trajectory, the associated target range, and the refractivity field sampled between selected targets of different heights. To determine and changes, a twofold approach is proposed: first, can be reasonably inferred based on terrain height; then, a new method of estimation is devised by using the property of the returned powers of a pointlike target at successive antenna elevations. The obtained shows skill based on in situ tower observation. As a result, the data quality of the retrieved refractivity may be improved with the newly added information of and .
ISSN:0739-0572
1520-0426
DOI:10.1175/JTECH-D-15-0224.1