Evaluation of the Positional Accuracy and Dosimetric Properties of a Three-dimensional Printed Device for Head and Neck Immobilization

Our aim was to investigate the feasibility of a three-dimensional (3D) -printed head-and-neck (HN) immobilization device by comparing its positional accuracy and dosimetric properties with those of a conventional immobilization device (CID). We prepared a 3D-printed immobilization device (3DID) cons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Radiological Technology 2017, Vol.73(1), pp.57-65
Hauptverfasser: Sato, Kiyokazu, Takeda, Ken, Dobashi, Suguru, Kadoya, Noriyuki, Ito, Kengo, Chiba, Mizuki, Kishi, Kazuma, Yanagawa, Isao, Jingu, Keiichi
Format: Artikel
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Our aim was to investigate the feasibility of a three-dimensional (3D) -printed head-and-neck (HN) immobilization device by comparing its positional accuracy and dosimetric properties with those of a conventional immobilization device (CID). We prepared a 3D-printed immobilization device (3DID) consisting of a mask and headrest with acrylonitrile-butadiene-styrene resin developed from the computed tomography data obtained by imaging a HN phantom. For comparison, a CID comprising a thermoplastic mask and headrest was prepared using the same HN phantom. We measured the setup error using the ExacTrac X-ray image system. Furthermore, using the ionization chamber and the water-equivalent phantom, we measured the changes in the dose due to the difference in the immobilization device material from the photon of 4 MV and 6 MV. The positional accuracy of the two devices were almost similar in each direction except in the vertical, lateral, and pitch directions (t-test, p
ISSN:0369-4305
1881-4883
DOI:10.6009/jjrt.2017_JSRT_73.1.57