Selecting Informative Variables in the Identification Problem

The problem of multidimensional object classification with small training sample is considered. The following algorithms of estimating variable informativeness are considered: Ad, Del, AdDel. A new algorithm for selecting informative variables is proposed. It is based on the optimization of the coef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Siberian Federal University. Mathematics & Physics 2016-01, Vol.9 (4), p.473-480
Hauptverfasser: Mihov, Eugene D, Nepomnyashchiy, Oleg V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem of multidimensional object classification with small training sample is considered. The following algorithms of estimating variable informativeness are considered: Ad, Del, AdDel. A new algorithm for selecting informative variables is proposed. It is based on the optimization of the coefficient vector of the kernel fuzziness. Some modification of this algorithm is also discussed. The comparative analysis of existing methods for selecting informative variables is presented.
ISSN:1997-1397
2313-6022
DOI:10.17516/1997-1397-2016-9-4-473-480