Triggering and Restabilization of Combustion Instability with Rocket Motor Acceleration
The probability of a liquid-propulsion rocket motor to develop screeching instability is studied computationally. The combustion chamber is accelerated as a rigid body using a prescribed acceleration time history; it is found that accelerations of proper magnitude, duration, and frequency induce a p...
Gespeichert in:
Veröffentlicht in: | AIAA journal 2016-05, Vol.54 (5), p.1652-1659 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The probability of a liquid-propulsion rocket motor to develop screeching instability is studied computationally. The combustion chamber is accelerated as a rigid body using a prescribed acceleration time history; it is found that accelerations of proper magnitude, duration, and frequency induce a pressure wave inside the combustion chamber that grows to a screeching acoustic wave limit cycle. For a rectangular rocket motor, a reciprocating transverse acceleration leads to the development of a transverse pressure wave limit cycle; for a cylindrical rocket motor, the limit cycle may be either a standing wave, for a transverse reciprocating acceleration, or a spinning wave, for a transverse rotating acceleration. It is found that a limit cycle may be induced by either a large acceleration pulse of short duration or a smaller acceleration pulse of a longer duration. The polynomial chaos expansion method is used to study the probability of growth to a limit-cycle oscillation when the amplitude and frequency of the transverse acceleration pulse are random. |
---|---|
ISSN: | 0001-1452 1533-385X |
DOI: | 10.2514/1.J054542 |