Implementing propensity score matching with network data: the effect of the General Agreement on Tariffs and Trade on bilateral trade

Motivated by the evaluation of the causal effect of the General Agreement on Tariffs and Trade on bilateral international trade flows, we investigate the role of network structure in propensity score matching under the assumption of strong ignorability. We study the sensitivity of causal inference w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society Series C: Applied Statistics 2017-04, Vol.66 (3), p.537-554
Hauptverfasser: Arpino, Bruno, De Benedictis, Luca, Mattei, Alessandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivated by the evaluation of the causal effect of the General Agreement on Tariffs and Trade on bilateral international trade flows, we investigate the role of network structure in propensity score matching under the assumption of strong ignorability. We study the sensitivity of causal inference with respect to the presence of characteristics of the network in the set of confounders conditionally on which strong ignorability is assumed to hold. We find that estimates of the average causal effect are highly sensitive to the node level network statistics in the set of confounders. Therefore, we argue that estimates may suffer from omitted variable bias when the network information is ignored, at least in our application.
ISSN:0035-9254
1467-9876
DOI:10.1111/rssc.12173