3D Seismic Flexure Analysis for Subsurface Fault Detection and Fracture Characterization

Seismic flexure is a new geometric attribute with the potential of delineating subtle faults and fractures from three-dimensional (3D) seismic surveys, especially those overlooked by the popular discontinuity and curvature attributes. Although the concept of flexure and its related algorithms have b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pure and applied geophysics 2017-03, Vol.174 (3), p.747-761
Hauptverfasser: Di, Haibin, Gao, Dengliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Seismic flexure is a new geometric attribute with the potential of delineating subtle faults and fractures from three-dimensional (3D) seismic surveys, especially those overlooked by the popular discontinuity and curvature attributes. Although the concept of flexure and its related algorithms have been published in the literature, the attribute has not been sufficiently applied to subsurface fault detection and fracture characterization. This paper provides a comprehensive study of the flexure attribute, including its definition, computation, as well as geologic implications for evaluating the fundamental fracture properties that are essential to fracture characterization and network modeling in the subsurface, through applications to the fractured reservoir at Teapot Dome, Wyoming (USA). Specifically, flexure measures the third-order variation of the geometry of a seismic reflector and is dependent on the measuring direction in 3D space; among all possible directions, flexure is considered most useful when extracted perpendicular to the orientation of dominant deformation; and flexure offers new insights into qualitative/quantitative fracture characterization, with its magnitude indicating the intensity of faulting and fracturing, its azimuth defining the orientation of most-likely fracture trends, and its sign differentiating the sense of displacement of faults and fractures.
ISSN:0033-4553
1420-9136
DOI:10.1007/s00024-016-1406-9