Low-cost and massive preparation of nitrogen-doped porous carbon for supercapacitor application
It is difficult for current supercapacitor electrode materials to meet the growing need for energy storage, considering their complicated preparation methods and high costs. Massive preparation strategies are of great importance for preparing low cost materials with good performance for supercapacit...
Gespeichert in:
Veröffentlicht in: | RSC advances 2017-01, Vol.7 (18), p.191-195 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is difficult for current supercapacitor electrode materials to meet the growing need for energy storage, considering their complicated preparation methods and high costs. Massive preparation strategies are of great importance for preparing low cost materials with good performance for supercapacitor applications. Herein, we developed a novel double crucible method to synthesize nitrogen-doped porous carbon (NPC) from natural flour in the molten salt of LiCl/KCl at 650 °C. The NPC material has large specific surface area (585 m
2
g
−1
) and high nitrogen doping content (6.5%). When used as an active supercapacitor electrode material, it exhibits a specific capacitance of 261 F g
−1
at 1 A g
−1
in 1 M H
2
SO
4
and 94% capacitance retention at 15 A g
−1
after 10 000 cycles. The new synthetic method is promising for application in massive production of nitrogen-doped porous carbon for energy storage.
Massive synthesis of nitrogen-doped porous carbon with superior supercapacitor performance. |
---|---|
ISSN: | 2046-2069 2046-2069 |
DOI: | 10.1039/c6ra28354c |