Some observational tests of a minimal galaxy formation model
Abstract Dark matter simulations can serve as a basis for creating galaxy histories via the galaxy–dark matter connection. Here, one such model by Becker is implemented with several variations on three different dark matter simulations. Stellar mass and star formation rates are assigned to all simul...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2017-04, Vol.466 (3), p.2718-2735 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Dark matter simulations can serve as a basis for creating galaxy histories via the galaxy–dark matter connection. Here, one such model by Becker is implemented with several variations on three different dark matter simulations. Stellar mass and star formation rates are assigned to all simulation subhaloes at all times, using subhalo mass gain to determine stellar mass gain. The observational properties of the resulting galaxy distributions are compared to each other and observations for a range of redshifts from 0 to 2. Although many of the galaxy distributions seem reasonable, there are noticeable differences as simulations, subhalo mass gain definitions or subhalo mass definitions are altered, suggesting that the model should change as these properties are varied. Agreement with observations may improve by including redshift dependence in the added-by-hand random contribution to star formation rate. There appears to be an excess of faint quiescent galaxies as well (perhaps due in part to differing definitions of quiescence). The ensemble of galaxy formation histories for these models tend to have more scatter around their average histories (for a fixed final stellar mass) than the two more predictive and elaborate semi-analytic models of Guo et al. and Henriques et al., and require more basis fluctuations (using principal component analysis) to capture 90 per cent of the scatter around their average histories. The codes to plot model predictions (in some cases alongside observational data) are publicly available to test other mock catalogues at https://github.com/jdcphysics/validation/. Information on how to use these codes is in Appendix A. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stw3202 |