Quantised MPC for LPV systems by using new Lyapunov–Krasovskii functional

This study deals with the problem of sampled-data model predictive control (MPC) for linear parameter varying (LPV) systems with input quantisation. The LPV systems under consideration depend on a set of parameters that are bounded and available online. To deal with a piecewise constant sampled-data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET control theory & applications 2017-02, Vol.11 (3), p.439-445
Hauptverfasser: Lee, Sangmoon, Kwon, Ohmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 445
container_issue 3
container_start_page 439
container_title IET control theory & applications
container_volume 11
creator Lee, Sangmoon
Kwon, Ohmin
description This study deals with the problem of sampled-data model predictive control (MPC) for linear parameter varying (LPV) systems with input quantisation. The LPV systems under consideration depend on a set of parameters that are bounded and available online. To deal with a piecewise constant sampled-data and quantisation of the control input, the closed-loop system is modelled as a continuous-time impulsive dynamic model with sector non-linearity. The control problem is formulated as a minimisation of the upper bound of infinite horizon cost function subject to a sufficient condition for stability. The stability of the proposed MPC is guaranteed by constructing new Lyapunov–Krasovskii functional. Finally, a numerical example is provided to illustrate the effectiveness and benefits of the proposed theoretical results.
doi_str_mv 10.1049/iet-cta.2016.0597
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884102320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884102320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4015-2ac1b358c57d9d8faa635623a35ac639bc4dd0bcf87873dfcfcf36652610db4b3</originalsourceid><addsrcrecordid>eNqFkL9OwzAQhy0EEqXwAGweYUixYzt_2ErV0qpBFKmwWo7jIJc0CXHSKhvvwBvyJDgKQgwIdMPd8PvudB8A5xiNMKLhlVa1I2sxchH2RoiF_gEYYJ9hJ_CYe_g9U3oMTozZIMSYR9kALB8akdfaqATerSYwLSoYrZ6gaU2ttgbGLWyMzp9hrvYwakXZ5MXu4-19WQlT7MyL1jBtclnrIhfZKThKRWbU2VcfgsfZdD2ZO9H97WIyjhxJEWaOKySOCQsk85MwCVIhPMI8lwjChPRIGEuaJCiWaeAHPklSaYt49g0PoySmMRmCi35vWRWvjTI132ojVZaJXBWN4TgIKEYucZGN4j4qq8KYSqW8rPRWVC3HiHfiuBXHrTjeieOdOMtc98xeZ6r9H-CT9dy9mSFEfGZhp4e72KZoKuvF_Hns8pf8Yrq2W8c_bpRJSj4BAGiSXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884102320</pqid></control><display><type>article</type><title>Quantised MPC for LPV systems by using new Lyapunov–Krasovskii functional</title><source>Wiley Online Library Open Access</source><creator>Lee, Sangmoon ; Kwon, Ohmin</creator><creatorcontrib>Lee, Sangmoon ; Kwon, Ohmin</creatorcontrib><description>This study deals with the problem of sampled-data model predictive control (MPC) for linear parameter varying (LPV) systems with input quantisation. The LPV systems under consideration depend on a set of parameters that are bounded and available online. To deal with a piecewise constant sampled-data and quantisation of the control input, the closed-loop system is modelled as a continuous-time impulsive dynamic model with sector non-linearity. The control problem is formulated as a minimisation of the upper bound of infinite horizon cost function subject to a sufficient condition for stability. The stability of the proposed MPC is guaranteed by constructing new Lyapunov–Krasovskii functional. Finally, a numerical example is provided to illustrate the effectiveness and benefits of the proposed theoretical results.</description><identifier>ISSN: 1751-8644</identifier><identifier>ISSN: 1751-8652</identifier><identifier>EISSN: 1751-8652</identifier><identifier>DOI: 10.1049/iet-cta.2016.0597</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>closed loop systems ; closed‐loop system ; Constants ; Construction costs ; continuous time systems ; continuous‐time impulsive dynamic model ; control input quantisation ; control nonlinearities ; Control systems ; Dynamic models ; Dynamical systems ; infinite horizon ; infinite horizon cost function ; linear parameter varying systems ; LPV systems ; Lyapunov‐Krasovskii functional ; Mathematical models ; Nonlinear dynamics ; Parameters ; piecewise constant sampled‐data ; predictive control ; quantised MPC ; Research Article ; sampled data systems ; sampled‐data model predictive control ; sector nonlinearity ; upper bound minimisation</subject><ispartof>IET control theory &amp; applications, 2017-02, Vol.11 (3), p.439-445</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2021 The Authors. IET Control Theory &amp; Applications published by John Wiley &amp; Sons, Ltd. on behalf of The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4015-2ac1b358c57d9d8faa635623a35ac639bc4dd0bcf87873dfcfcf36652610db4b3</citedby><cites>FETCH-LOGICAL-c4015-2ac1b358c57d9d8faa635623a35ac639bc4dd0bcf87873dfcfcf36652610db4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-cta.2016.0597$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-cta.2016.0597$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-cta.2016.0597$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Lee, Sangmoon</creatorcontrib><creatorcontrib>Kwon, Ohmin</creatorcontrib><title>Quantised MPC for LPV systems by using new Lyapunov–Krasovskii functional</title><title>IET control theory &amp; applications</title><description>This study deals with the problem of sampled-data model predictive control (MPC) for linear parameter varying (LPV) systems with input quantisation. The LPV systems under consideration depend on a set of parameters that are bounded and available online. To deal with a piecewise constant sampled-data and quantisation of the control input, the closed-loop system is modelled as a continuous-time impulsive dynamic model with sector non-linearity. The control problem is formulated as a minimisation of the upper bound of infinite horizon cost function subject to a sufficient condition for stability. The stability of the proposed MPC is guaranteed by constructing new Lyapunov–Krasovskii functional. Finally, a numerical example is provided to illustrate the effectiveness and benefits of the proposed theoretical results.</description><subject>closed loop systems</subject><subject>closed‐loop system</subject><subject>Constants</subject><subject>Construction costs</subject><subject>continuous time systems</subject><subject>continuous‐time impulsive dynamic model</subject><subject>control input quantisation</subject><subject>control nonlinearities</subject><subject>Control systems</subject><subject>Dynamic models</subject><subject>Dynamical systems</subject><subject>infinite horizon</subject><subject>infinite horizon cost function</subject><subject>linear parameter varying systems</subject><subject>LPV systems</subject><subject>Lyapunov‐Krasovskii functional</subject><subject>Mathematical models</subject><subject>Nonlinear dynamics</subject><subject>Parameters</subject><subject>piecewise constant sampled‐data</subject><subject>predictive control</subject><subject>quantised MPC</subject><subject>Research Article</subject><subject>sampled data systems</subject><subject>sampled‐data model predictive control</subject><subject>sector nonlinearity</subject><subject>upper bound minimisation</subject><issn>1751-8644</issn><issn>1751-8652</issn><issn>1751-8652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkL9OwzAQhy0EEqXwAGweYUixYzt_2ErV0qpBFKmwWo7jIJc0CXHSKhvvwBvyJDgKQgwIdMPd8PvudB8A5xiNMKLhlVa1I2sxchH2RoiF_gEYYJ9hJ_CYe_g9U3oMTozZIMSYR9kALB8akdfaqATerSYwLSoYrZ6gaU2ttgbGLWyMzp9hrvYwakXZ5MXu4-19WQlT7MyL1jBtclnrIhfZKThKRWbU2VcfgsfZdD2ZO9H97WIyjhxJEWaOKySOCQsk85MwCVIhPMI8lwjChPRIGEuaJCiWaeAHPklSaYt49g0PoySmMRmCi35vWRWvjTI132ojVZaJXBWN4TgIKEYucZGN4j4qq8KYSqW8rPRWVC3HiHfiuBXHrTjeieOdOMtc98xeZ6r9H-CT9dy9mSFEfGZhp4e72KZoKuvF_Hns8pf8Yrq2W8c_bpRJSj4BAGiSXQ</recordid><startdate>20170203</startdate><enddate>20170203</enddate><creator>Lee, Sangmoon</creator><creator>Kwon, Ohmin</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170203</creationdate><title>Quantised MPC for LPV systems by using new Lyapunov–Krasovskii functional</title><author>Lee, Sangmoon ; Kwon, Ohmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4015-2ac1b358c57d9d8faa635623a35ac639bc4dd0bcf87873dfcfcf36652610db4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>closed loop systems</topic><topic>closed‐loop system</topic><topic>Constants</topic><topic>Construction costs</topic><topic>continuous time systems</topic><topic>continuous‐time impulsive dynamic model</topic><topic>control input quantisation</topic><topic>control nonlinearities</topic><topic>Control systems</topic><topic>Dynamic models</topic><topic>Dynamical systems</topic><topic>infinite horizon</topic><topic>infinite horizon cost function</topic><topic>linear parameter varying systems</topic><topic>LPV systems</topic><topic>Lyapunov‐Krasovskii functional</topic><topic>Mathematical models</topic><topic>Nonlinear dynamics</topic><topic>Parameters</topic><topic>piecewise constant sampled‐data</topic><topic>predictive control</topic><topic>quantised MPC</topic><topic>Research Article</topic><topic>sampled data systems</topic><topic>sampled‐data model predictive control</topic><topic>sector nonlinearity</topic><topic>upper bound minimisation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sangmoon</creatorcontrib><creatorcontrib>Kwon, Ohmin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IET control theory &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Sangmoon</au><au>Kwon, Ohmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantised MPC for LPV systems by using new Lyapunov–Krasovskii functional</atitle><jtitle>IET control theory &amp; applications</jtitle><date>2017-02-03</date><risdate>2017</risdate><volume>11</volume><issue>3</issue><spage>439</spage><epage>445</epage><pages>439-445</pages><issn>1751-8644</issn><issn>1751-8652</issn><eissn>1751-8652</eissn><abstract>This study deals with the problem of sampled-data model predictive control (MPC) for linear parameter varying (LPV) systems with input quantisation. The LPV systems under consideration depend on a set of parameters that are bounded and available online. To deal with a piecewise constant sampled-data and quantisation of the control input, the closed-loop system is modelled as a continuous-time impulsive dynamic model with sector non-linearity. The control problem is formulated as a minimisation of the upper bound of infinite horizon cost function subject to a sufficient condition for stability. The stability of the proposed MPC is guaranteed by constructing new Lyapunov–Krasovskii functional. Finally, a numerical example is provided to illustrate the effectiveness and benefits of the proposed theoretical results.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-cta.2016.0597</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1751-8644
ispartof IET control theory & applications, 2017-02, Vol.11 (3), p.439-445
issn 1751-8644
1751-8652
1751-8652
language eng
recordid cdi_proquest_miscellaneous_1884102320
source Wiley Online Library Open Access
subjects closed loop systems
closed‐loop system
Constants
Construction costs
continuous time systems
continuous‐time impulsive dynamic model
control input quantisation
control nonlinearities
Control systems
Dynamic models
Dynamical systems
infinite horizon
infinite horizon cost function
linear parameter varying systems
LPV systems
Lyapunov‐Krasovskii functional
Mathematical models
Nonlinear dynamics
Parameters
piecewise constant sampled‐data
predictive control
quantised MPC
Research Article
sampled data systems
sampled‐data model predictive control
sector nonlinearity
upper bound minimisation
title Quantised MPC for LPV systems by using new Lyapunov–Krasovskii functional
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A53%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantised%20MPC%20for%20LPV%20systems%20by%20using%20new%20Lyapunov%E2%80%93Krasovskii%20functional&rft.jtitle=IET%20control%20theory%20&%20applications&rft.au=Lee,%20Sangmoon&rft.date=2017-02-03&rft.volume=11&rft.issue=3&rft.spage=439&rft.epage=445&rft.pages=439-445&rft.issn=1751-8644&rft.eissn=1751-8652&rft_id=info:doi/10.1049/iet-cta.2016.0597&rft_dat=%3Cproquest_24P%3E1884102320%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884102320&rft_id=info:pmid/&rfr_iscdi=true