Quantised MPC for LPV systems by using new Lyapunov–Krasovskii functional
This study deals with the problem of sampled-data model predictive control (MPC) for linear parameter varying (LPV) systems with input quantisation. The LPV systems under consideration depend on a set of parameters that are bounded and available online. To deal with a piecewise constant sampled-data...
Gespeichert in:
Veröffentlicht in: | IET control theory & applications 2017-02, Vol.11 (3), p.439-445 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study deals with the problem of sampled-data model predictive control (MPC) for linear parameter varying (LPV) systems with input quantisation. The LPV systems under consideration depend on a set of parameters that are bounded and available online. To deal with a piecewise constant sampled-data and quantisation of the control input, the closed-loop system is modelled as a continuous-time impulsive dynamic model with sector non-linearity. The control problem is formulated as a minimisation of the upper bound of infinite horizon cost function subject to a sufficient condition for stability. The stability of the proposed MPC is guaranteed by constructing new Lyapunov–Krasovskii functional. Finally, a numerical example is provided to illustrate the effectiveness and benefits of the proposed theoretical results. |
---|---|
ISSN: | 1751-8644 1751-8652 1751-8652 |
DOI: | 10.1049/iet-cta.2016.0597 |