Quantised MPC for LPV systems by using new Lyapunov–Krasovskii functional

This study deals with the problem of sampled-data model predictive control (MPC) for linear parameter varying (LPV) systems with input quantisation. The LPV systems under consideration depend on a set of parameters that are bounded and available online. To deal with a piecewise constant sampled-data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET control theory & applications 2017-02, Vol.11 (3), p.439-445
Hauptverfasser: Lee, Sangmoon, Kwon, Ohmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study deals with the problem of sampled-data model predictive control (MPC) for linear parameter varying (LPV) systems with input quantisation. The LPV systems under consideration depend on a set of parameters that are bounded and available online. To deal with a piecewise constant sampled-data and quantisation of the control input, the closed-loop system is modelled as a continuous-time impulsive dynamic model with sector non-linearity. The control problem is formulated as a minimisation of the upper bound of infinite horizon cost function subject to a sufficient condition for stability. The stability of the proposed MPC is guaranteed by constructing new Lyapunov–Krasovskii functional. Finally, a numerical example is provided to illustrate the effectiveness and benefits of the proposed theoretical results.
ISSN:1751-8644
1751-8652
1751-8652
DOI:10.1049/iet-cta.2016.0597