Robust Social Categorization Emerges From Learning the Identities of Very Few Faces
Viewers are highly accurate at recognizing sex and race from faces-though it remains unclear how this is achieved. Recognition of familiar faces is also highly accurate across a very large range of viewing conditions, despite the difficulty of the problem. Here we show that computation of sex and ra...
Gespeichert in:
Veröffentlicht in: | Psychological review 2017-03, Vol.124 (2), p.115-129 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Viewers are highly accurate at recognizing sex and race from faces-though it remains unclear how this is achieved. Recognition of familiar faces is also highly accurate across a very large range of viewing conditions, despite the difficulty of the problem. Here we show that computation of sex and race can emerge incidentally from a system designed to compute identity. We emphasize the role of multiple encounters with a small number of people, which we take to underlie human face learning. We use highly variable everyday 'ambient' images of a few people to train a Linear Discriminant Analysis (LDA) model on identity. The resulting model has human-like properties, including a facility to cohere previously unseen ambient images of familiar (trained) people-an ability which breaks down for the faces of unknown (untrained) people. The first dimension created by the identity-trained LDA classifies both familiar and unfamiliar faces by sex, and the second dimension classifies faces by race-even though neither of these categories was explicitly coded at learning. By varying the numbers and types of face identities on which a further series of LDA models were trained, we show that this incidental learning of sex and race reflects covariation between these social categories and face identity, and that a remarkably small number of identities need be learnt before such incidental dimensions emerge. The task of learning to recognize familiar faces is sufficient to create certain salient social categories. |
---|---|
ISSN: | 0033-295X 1939-1471 |
DOI: | 10.1037/rev0000048 |