All-Optical Chirality-Sensitive Sorting via Reversible Lateral Forces in Interference Fields

Separating substances by their chirality faces great challenges as well as opportunities in chemistry and biology. In this study, we propose an all-optical solution for passive sorting of chiral objects using chirality-dependent lateral optical forces induced by judiciously interfered fields. First,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2017-04, Vol.11 (4), p.4292-4300
Hauptverfasser: Zhang, Tianhang, Mahdy, Mahdy Rahman Chowdhury, Liu, Yongmin, Teng, Jing Hua, Lim, Chwee Teck, Wang, Zheng, Qiu, Cheng-Wei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Separating substances by their chirality faces great challenges as well as opportunities in chemistry and biology. In this study, we propose an all-optical solution for passive sorting of chiral objects using chirality-dependent lateral optical forces induced by judiciously interfered fields. First, we investigate the optical forces when the chiral objects are situated in the interference field formed by two plane waves with arbitrary polarization states. When the plane waves are either linearly or circularly polarized, nonzero lateral forces are found at the particle’s trapping positions, making such sideways motions observable. Although the lateral forces have different magnitudes on particles with different chirality, their directions are the same for opposite handedness particles, rendering it difficult to separate the chiral particles. We further solve the sorting problem by investigating more complicated polarization states. Finally, we achieve the chiral-selective separation by illuminating only one beam toward the chiral substance situated at an interface between two media, taking advantage of the native interference between the incident and reflective beams at the interface. Our study provides a robust and insightful approach to sort chiral substances and biomolecules with plausible optical setups.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.7b01428