Comparison of phytohormone levels and transcript profiles during seasonal dormancy transitions in underground adventitious buds of leafy spurge
Leafy spurge ( Euphorbia esula L.) is an herbaceous perennial weed that maintains its perennial growth habit through generation of underground adventitious buds (UABs) on the crown and lateral roots. These UABs undergo seasonal phases of dormancy under natural conditions, namely para-, endo-, and ec...
Gespeichert in:
Veröffentlicht in: | Plant molecular biology 2017-06, Vol.94 (3), p.281-302 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Leafy spurge (
Euphorbia esula
L.) is an herbaceous perennial weed that maintains its perennial growth habit through generation of underground adventitious buds (UABs) on the crown and lateral roots. These UABs undergo seasonal phases of dormancy under natural conditions, namely para-, endo-, and ecodormancy in summer, fall, and winter, respectively. These dormancy phases can also be induced in growth chambers by manipulating photoperiod and temperature. In this study, UABs induced into the three phases of dormancy under controlled conditions were used to compare changes in phytohormone and transcriptome profiles. Results indicated that relatively high levels of ABA, the ABA metabolite PA, and IAA were found in paradormant buds. When UABs transitioned from para- to endodormancy, ABA and PA levels decreased, whereas IAA levels were maintained. Additionally, transcript profiles associated with regulation of soluble sugars and ethylene activities were also increased during para- to endodormancy transition, which may play some role in maintaining endodormancy status. When crown buds transitioned from endo- to ecodormancy, the ABA metabolites PA and DPA decreased significantly along with the down-regulation of ABA biosynthesis genes,
ABA2
and
NCED3
. IAA levels were also significantly lower in ecodormant buds than that of endodormant buds. We hypothesize that extended cold treatment may trigger physiological stress in endodormant buds, and that these stress-associated signals induced the endo- to ecodormancy transition and growth competence. The up-regulation of NAD/NADH phosphorylation and dephosphorylation pathway, and
MAF3
-like and
GRF
s genes, may be considered as markers of growth competency. |
---|---|
ISSN: | 0167-4412 1573-5028 |
DOI: | 10.1007/s11103-017-0607-7 |