Microbial production, ultrasound-assisted extraction and characterization of biopolymer polyhydroxybutyrate (PHB) from terrestrial (P. hysterophorus) and aquatic (E. crassipes) invasive weeds
[Display omitted] •Synthesis of PHB from two invasive weeds, viz. P. hysterophorus and E. crassipes.•Separate fermentation of pentose and hexose-rich hydrolyzates by Ralstonia eutropha.•PHB content of dry cell mass=8.1–21.6% w/w.•PHB yield=6.85×10−3–36.41×10−3% w/w raw biomass.•Glass transition temp...
Gespeichert in:
Veröffentlicht in: | Bioresource technology 2017-10, Vol.242, p.304-310 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 310 |
---|---|
container_issue | |
container_start_page | 304 |
container_title | Bioresource technology |
container_volume | 242 |
creator | Pradhan, Sushobhan Borah, Arup Jyoti Poddar, Maneesh Kumar Dikshit, Pritam Kumar Rohidas, Lilendar Moholkar, Vijayanand S. |
description | [Display omitted]
•Synthesis of PHB from two invasive weeds, viz. P. hysterophorus and E. crassipes.•Separate fermentation of pentose and hexose-rich hydrolyzates by Ralstonia eutropha.•PHB content of dry cell mass=8.1–21.6% w/w.•PHB yield=6.85×10−3–36.41×10−3% w/w raw biomass.•Glass transition temp.=−9° to 9°C, maximum thermal degradation temp.=370° to 389°C.
This study reports synthesis of biodegradable poly(3-hydroxybutyrate) (PHB) polymer from two invasive weeds, viz. P. hysterophorus and E. crassipes. The pentose and hexose-rich hydrolyzates obtained from acid pretreatment and enzymatic hydrolysis of two biomasses were separately fermented using Ralstonia eutropha MTCC 8320 sp. PHB was extracted using sonication and was characterized using FTIR, 1H and 13C NMR and XRD. PHB content of dry cell mass was 8.1–21.6% w/w, and the PHB yield was 6.85×10−3–36.41×10−3% w/w raw biomass. Thermal properties of PHB were determined by TGA, DTG and DSC analysis. PHB obtained from pentose-hydrolyzate had glass transition temperatures of 6°–9°C, while PHB from hexose-rich hydrolyzate had maximum thermal degradation temperatures of 370°–389°C. These thermal properties were comparable to the properties of commercial PHB. Probable causes leading to differences in thermal properties of pentose and hexose-derived PHB are: extent of crystallinity and presence of impurity in the polymer matrix. |
doi_str_mv | 10.1016/j.biortech.2017.03.117 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1883839030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S096085241730398X</els_id><sourcerecordid>1883839030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-fda82e4cb66033a79db04772b2a5ad6423dcb9d71d5370d36b70bf37461fdad33</originalsourceid><addsrcrecordid>eNqFUU1v1DAQtRCILoW_UPm4lUjwR9ZObtCqUKQieoCz5dgTxaskTu1kafhz_DWc3ZYrp5Fn3pv3PA-hC0pySqj4sM9r58MEps0ZoTInPKdUvkAbWkqesUqKl2hDKkGycseKM_Qmxj0hhFPJXqMzVnIhRMU26M83Z4Kvne7wGLydzeT88B7P3RR09PNgMx2jixNYDI-pd5xjPVhsWr0-Ibjf-tj0DU6eRt8tPQS81naxwT8u9TwtQU-At_e3V5e4Cb7HiRcgTmEV3t7nuF2SRvBj68McL48C-mFOiw3e3uTYhNXGCGnkhoOO7gD4F4CNb9GrRncR3j3Vc_Tz882P69vs7vuXr9ef7jJTkN2UNVaXDApTC0E417KyNSmkZDXTO21Fwbg1dWUltTsuieWilqRuuCwETVTL-TnanvamKz3MybnqXTTQdXoAP0dFy5KXvCKcJKg4QdNhYwzQqDG4XodFUaLW8NRePYen1vAU4SqFl4gXTxpz3YP9R3tOKwE-ngCQfnpwEFQ0DgYD1gUwk7Le_U_jL_YatIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1883839030</pqid></control><display><type>article</type><title>Microbial production, ultrasound-assisted extraction and characterization of biopolymer polyhydroxybutyrate (PHB) from terrestrial (P. hysterophorus) and aquatic (E. crassipes) invasive weeds</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Pradhan, Sushobhan ; Borah, Arup Jyoti ; Poddar, Maneesh Kumar ; Dikshit, Pritam Kumar ; Rohidas, Lilendar ; Moholkar, Vijayanand S.</creator><creatorcontrib>Pradhan, Sushobhan ; Borah, Arup Jyoti ; Poddar, Maneesh Kumar ; Dikshit, Pritam Kumar ; Rohidas, Lilendar ; Moholkar, Vijayanand S.</creatorcontrib><description>[Display omitted]
•Synthesis of PHB from two invasive weeds, viz. P. hysterophorus and E. crassipes.•Separate fermentation of pentose and hexose-rich hydrolyzates by Ralstonia eutropha.•PHB content of dry cell mass=8.1–21.6% w/w.•PHB yield=6.85×10−3–36.41×10−3% w/w raw biomass.•Glass transition temp.=−9° to 9°C, maximum thermal degradation temp.=370° to 389°C.
This study reports synthesis of biodegradable poly(3-hydroxybutyrate) (PHB) polymer from two invasive weeds, viz. P. hysterophorus and E. crassipes. The pentose and hexose-rich hydrolyzates obtained from acid pretreatment and enzymatic hydrolysis of two biomasses were separately fermented using Ralstonia eutropha MTCC 8320 sp. PHB was extracted using sonication and was characterized using FTIR, 1H and 13C NMR and XRD. PHB content of dry cell mass was 8.1–21.6% w/w, and the PHB yield was 6.85×10−3–36.41×10−3% w/w raw biomass. Thermal properties of PHB were determined by TGA, DTG and DSC analysis. PHB obtained from pentose-hydrolyzate had glass transition temperatures of 6°–9°C, while PHB from hexose-rich hydrolyzate had maximum thermal degradation temperatures of 370°–389°C. These thermal properties were comparable to the properties of commercial PHB. Probable causes leading to differences in thermal properties of pentose and hexose-derived PHB are: extent of crystallinity and presence of impurity in the polymer matrix.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2017.03.117</identifier><identifier>PMID: 28366692</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Biopolymers ; Eichhornia crassipes ; Fermentation ; Hydroxybutyrates ; Parthenium hysterophorus ; PHB ; Plant Weeds ; Polyesters ; Ralstonia eutropha</subject><ispartof>Bioresource technology, 2017-10, Vol.242, p.304-310</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-fda82e4cb66033a79db04772b2a5ad6423dcb9d71d5370d36b70bf37461fdad33</citedby><cites>FETCH-LOGICAL-c405t-fda82e4cb66033a79db04772b2a5ad6423dcb9d71d5370d36b70bf37461fdad33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biortech.2017.03.117$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28366692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pradhan, Sushobhan</creatorcontrib><creatorcontrib>Borah, Arup Jyoti</creatorcontrib><creatorcontrib>Poddar, Maneesh Kumar</creatorcontrib><creatorcontrib>Dikshit, Pritam Kumar</creatorcontrib><creatorcontrib>Rohidas, Lilendar</creatorcontrib><creatorcontrib>Moholkar, Vijayanand S.</creatorcontrib><title>Microbial production, ultrasound-assisted extraction and characterization of biopolymer polyhydroxybutyrate (PHB) from terrestrial (P. hysterophorus) and aquatic (E. crassipes) invasive weeds</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>[Display omitted]
•Synthesis of PHB from two invasive weeds, viz. P. hysterophorus and E. crassipes.•Separate fermentation of pentose and hexose-rich hydrolyzates by Ralstonia eutropha.•PHB content of dry cell mass=8.1–21.6% w/w.•PHB yield=6.85×10−3–36.41×10−3% w/w raw biomass.•Glass transition temp.=−9° to 9°C, maximum thermal degradation temp.=370° to 389°C.
This study reports synthesis of biodegradable poly(3-hydroxybutyrate) (PHB) polymer from two invasive weeds, viz. P. hysterophorus and E. crassipes. The pentose and hexose-rich hydrolyzates obtained from acid pretreatment and enzymatic hydrolysis of two biomasses were separately fermented using Ralstonia eutropha MTCC 8320 sp. PHB was extracted using sonication and was characterized using FTIR, 1H and 13C NMR and XRD. PHB content of dry cell mass was 8.1–21.6% w/w, and the PHB yield was 6.85×10−3–36.41×10−3% w/w raw biomass. Thermal properties of PHB were determined by TGA, DTG and DSC analysis. PHB obtained from pentose-hydrolyzate had glass transition temperatures of 6°–9°C, while PHB from hexose-rich hydrolyzate had maximum thermal degradation temperatures of 370°–389°C. These thermal properties were comparable to the properties of commercial PHB. Probable causes leading to differences in thermal properties of pentose and hexose-derived PHB are: extent of crystallinity and presence of impurity in the polymer matrix.</description><subject>Biopolymers</subject><subject>Eichhornia crassipes</subject><subject>Fermentation</subject><subject>Hydroxybutyrates</subject><subject>Parthenium hysterophorus</subject><subject>PHB</subject><subject>Plant Weeds</subject><subject>Polyesters</subject><subject>Ralstonia eutropha</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU1v1DAQtRCILoW_UPm4lUjwR9ZObtCqUKQieoCz5dgTxaskTu1kafhz_DWc3ZYrp5Fn3pv3PA-hC0pySqj4sM9r58MEps0ZoTInPKdUvkAbWkqesUqKl2hDKkGycseKM_Qmxj0hhFPJXqMzVnIhRMU26M83Z4Kvne7wGLydzeT88B7P3RR09PNgMx2jixNYDI-pd5xjPVhsWr0-Ibjf-tj0DU6eRt8tPQS81naxwT8u9TwtQU-At_e3V5e4Cb7HiRcgTmEV3t7nuF2SRvBj68McL48C-mFOiw3e3uTYhNXGCGnkhoOO7gD4F4CNb9GrRncR3j3Vc_Tz882P69vs7vuXr9ef7jJTkN2UNVaXDApTC0E417KyNSmkZDXTO21Fwbg1dWUltTsuieWilqRuuCwETVTL-TnanvamKz3MybnqXTTQdXoAP0dFy5KXvCKcJKg4QdNhYwzQqDG4XodFUaLW8NRePYen1vAU4SqFl4gXTxpz3YP9R3tOKwE-ngCQfnpwEFQ0DgYD1gUwk7Le_U_jL_YatIg</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Pradhan, Sushobhan</creator><creator>Borah, Arup Jyoti</creator><creator>Poddar, Maneesh Kumar</creator><creator>Dikshit, Pritam Kumar</creator><creator>Rohidas, Lilendar</creator><creator>Moholkar, Vijayanand S.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20171001</creationdate><title>Microbial production, ultrasound-assisted extraction and characterization of biopolymer polyhydroxybutyrate (PHB) from terrestrial (P. hysterophorus) and aquatic (E. crassipes) invasive weeds</title><author>Pradhan, Sushobhan ; Borah, Arup Jyoti ; Poddar, Maneesh Kumar ; Dikshit, Pritam Kumar ; Rohidas, Lilendar ; Moholkar, Vijayanand S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-fda82e4cb66033a79db04772b2a5ad6423dcb9d71d5370d36b70bf37461fdad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biopolymers</topic><topic>Eichhornia crassipes</topic><topic>Fermentation</topic><topic>Hydroxybutyrates</topic><topic>Parthenium hysterophorus</topic><topic>PHB</topic><topic>Plant Weeds</topic><topic>Polyesters</topic><topic>Ralstonia eutropha</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pradhan, Sushobhan</creatorcontrib><creatorcontrib>Borah, Arup Jyoti</creatorcontrib><creatorcontrib>Poddar, Maneesh Kumar</creatorcontrib><creatorcontrib>Dikshit, Pritam Kumar</creatorcontrib><creatorcontrib>Rohidas, Lilendar</creatorcontrib><creatorcontrib>Moholkar, Vijayanand S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pradhan, Sushobhan</au><au>Borah, Arup Jyoti</au><au>Poddar, Maneesh Kumar</au><au>Dikshit, Pritam Kumar</au><au>Rohidas, Lilendar</au><au>Moholkar, Vijayanand S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial production, ultrasound-assisted extraction and characterization of biopolymer polyhydroxybutyrate (PHB) from terrestrial (P. hysterophorus) and aquatic (E. crassipes) invasive weeds</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>242</volume><spage>304</spage><epage>310</epage><pages>304-310</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>[Display omitted]
•Synthesis of PHB from two invasive weeds, viz. P. hysterophorus and E. crassipes.•Separate fermentation of pentose and hexose-rich hydrolyzates by Ralstonia eutropha.•PHB content of dry cell mass=8.1–21.6% w/w.•PHB yield=6.85×10−3–36.41×10−3% w/w raw biomass.•Glass transition temp.=−9° to 9°C, maximum thermal degradation temp.=370° to 389°C.
This study reports synthesis of biodegradable poly(3-hydroxybutyrate) (PHB) polymer from two invasive weeds, viz. P. hysterophorus and E. crassipes. The pentose and hexose-rich hydrolyzates obtained from acid pretreatment and enzymatic hydrolysis of two biomasses were separately fermented using Ralstonia eutropha MTCC 8320 sp. PHB was extracted using sonication and was characterized using FTIR, 1H and 13C NMR and XRD. PHB content of dry cell mass was 8.1–21.6% w/w, and the PHB yield was 6.85×10−3–36.41×10−3% w/w raw biomass. Thermal properties of PHB were determined by TGA, DTG and DSC analysis. PHB obtained from pentose-hydrolyzate had glass transition temperatures of 6°–9°C, while PHB from hexose-rich hydrolyzate had maximum thermal degradation temperatures of 370°–389°C. These thermal properties were comparable to the properties of commercial PHB. Probable causes leading to differences in thermal properties of pentose and hexose-derived PHB are: extent of crystallinity and presence of impurity in the polymer matrix.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>28366692</pmid><doi>10.1016/j.biortech.2017.03.117</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-8524 |
ispartof | Bioresource technology, 2017-10, Vol.242, p.304-310 |
issn | 0960-8524 1873-2976 |
language | eng |
recordid | cdi_proquest_miscellaneous_1883839030 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Biopolymers Eichhornia crassipes Fermentation Hydroxybutyrates Parthenium hysterophorus PHB Plant Weeds Polyesters Ralstonia eutropha |
title | Microbial production, ultrasound-assisted extraction and characterization of biopolymer polyhydroxybutyrate (PHB) from terrestrial (P. hysterophorus) and aquatic (E. crassipes) invasive weeds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20production,%20ultrasound-assisted%20extraction%20and%20characterization%20of%20biopolymer%20polyhydroxybutyrate%20(PHB)%20from%20terrestrial%20(P.%20hysterophorus)%20and%20aquatic%20(E.%20crassipes)%20invasive%20weeds&rft.jtitle=Bioresource%20technology&rft.au=Pradhan,%20Sushobhan&rft.date=2017-10-01&rft.volume=242&rft.spage=304&rft.epage=310&rft.pages=304-310&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2017.03.117&rft_dat=%3Cproquest_cross%3E1883839030%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1883839030&rft_id=info:pmid/28366692&rft_els_id=S096085241730398X&rfr_iscdi=true |