Microbial production, ultrasound-assisted extraction and characterization of biopolymer polyhydroxybutyrate (PHB) from terrestrial (P. hysterophorus) and aquatic (E. crassipes) invasive weeds

[Display omitted] •Synthesis of PHB from two invasive weeds, viz. P. hysterophorus and E. crassipes.•Separate fermentation of pentose and hexose-rich hydrolyzates by Ralstonia eutropha.•PHB content of dry cell mass=8.1–21.6% w/w.•PHB yield=6.85×10−3–36.41×10−3% w/w raw biomass.•Glass transition temp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2017-10, Vol.242, p.304-310
Hauptverfasser: Pradhan, Sushobhan, Borah, Arup Jyoti, Poddar, Maneesh Kumar, Dikshit, Pritam Kumar, Rohidas, Lilendar, Moholkar, Vijayanand S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 310
container_issue
container_start_page 304
container_title Bioresource technology
container_volume 242
creator Pradhan, Sushobhan
Borah, Arup Jyoti
Poddar, Maneesh Kumar
Dikshit, Pritam Kumar
Rohidas, Lilendar
Moholkar, Vijayanand S.
description [Display omitted] •Synthesis of PHB from two invasive weeds, viz. P. hysterophorus and E. crassipes.•Separate fermentation of pentose and hexose-rich hydrolyzates by Ralstonia eutropha.•PHB content of dry cell mass=8.1–21.6% w/w.•PHB yield=6.85×10−3–36.41×10−3% w/w raw biomass.•Glass transition temp.=−9° to 9°C, maximum thermal degradation temp.=370° to 389°C. This study reports synthesis of biodegradable poly(3-hydroxybutyrate) (PHB) polymer from two invasive weeds, viz. P. hysterophorus and E. crassipes. The pentose and hexose-rich hydrolyzates obtained from acid pretreatment and enzymatic hydrolysis of two biomasses were separately fermented using Ralstonia eutropha MTCC 8320 sp. PHB was extracted using sonication and was characterized using FTIR, 1H and 13C NMR and XRD. PHB content of dry cell mass was 8.1–21.6% w/w, and the PHB yield was 6.85×10−3–36.41×10−3% w/w raw biomass. Thermal properties of PHB were determined by TGA, DTG and DSC analysis. PHB obtained from pentose-hydrolyzate had glass transition temperatures of 6°–9°C, while PHB from hexose-rich hydrolyzate had maximum thermal degradation temperatures of 370°–389°C. These thermal properties were comparable to the properties of commercial PHB. Probable causes leading to differences in thermal properties of pentose and hexose-derived PHB are: extent of crystallinity and presence of impurity in the polymer matrix.
doi_str_mv 10.1016/j.biortech.2017.03.117
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1883839030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S096085241730398X</els_id><sourcerecordid>1883839030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-fda82e4cb66033a79db04772b2a5ad6423dcb9d71d5370d36b70bf37461fdad33</originalsourceid><addsrcrecordid>eNqFUU1v1DAQtRCILoW_UPm4lUjwR9ZObtCqUKQieoCz5dgTxaskTu1kafhz_DWc3ZYrp5Fn3pv3PA-hC0pySqj4sM9r58MEps0ZoTInPKdUvkAbWkqesUqKl2hDKkGycseKM_Qmxj0hhFPJXqMzVnIhRMU26M83Z4Kvne7wGLydzeT88B7P3RR09PNgMx2jixNYDI-pd5xjPVhsWr0-Ibjf-tj0DU6eRt8tPQS81naxwT8u9TwtQU-At_e3V5e4Cb7HiRcgTmEV3t7nuF2SRvBj68McL48C-mFOiw3e3uTYhNXGCGnkhoOO7gD4F4CNb9GrRncR3j3Vc_Tz882P69vs7vuXr9ef7jJTkN2UNVaXDApTC0E417KyNSmkZDXTO21Fwbg1dWUltTsuieWilqRuuCwETVTL-TnanvamKz3MybnqXTTQdXoAP0dFy5KXvCKcJKg4QdNhYwzQqDG4XodFUaLW8NRePYen1vAU4SqFl4gXTxpz3YP9R3tOKwE-ngCQfnpwEFQ0DgYD1gUwk7Le_U_jL_YatIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1883839030</pqid></control><display><type>article</type><title>Microbial production, ultrasound-assisted extraction and characterization of biopolymer polyhydroxybutyrate (PHB) from terrestrial (P. hysterophorus) and aquatic (E. crassipes) invasive weeds</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Pradhan, Sushobhan ; Borah, Arup Jyoti ; Poddar, Maneesh Kumar ; Dikshit, Pritam Kumar ; Rohidas, Lilendar ; Moholkar, Vijayanand S.</creator><creatorcontrib>Pradhan, Sushobhan ; Borah, Arup Jyoti ; Poddar, Maneesh Kumar ; Dikshit, Pritam Kumar ; Rohidas, Lilendar ; Moholkar, Vijayanand S.</creatorcontrib><description>[Display omitted] •Synthesis of PHB from two invasive weeds, viz. P. hysterophorus and E. crassipes.•Separate fermentation of pentose and hexose-rich hydrolyzates by Ralstonia eutropha.•PHB content of dry cell mass=8.1–21.6% w/w.•PHB yield=6.85×10−3–36.41×10−3% w/w raw biomass.•Glass transition temp.=−9° to 9°C, maximum thermal degradation temp.=370° to 389°C. This study reports synthesis of biodegradable poly(3-hydroxybutyrate) (PHB) polymer from two invasive weeds, viz. P. hysterophorus and E. crassipes. The pentose and hexose-rich hydrolyzates obtained from acid pretreatment and enzymatic hydrolysis of two biomasses were separately fermented using Ralstonia eutropha MTCC 8320 sp. PHB was extracted using sonication and was characterized using FTIR, 1H and 13C NMR and XRD. PHB content of dry cell mass was 8.1–21.6% w/w, and the PHB yield was 6.85×10−3–36.41×10−3% w/w raw biomass. Thermal properties of PHB were determined by TGA, DTG and DSC analysis. PHB obtained from pentose-hydrolyzate had glass transition temperatures of 6°–9°C, while PHB from hexose-rich hydrolyzate had maximum thermal degradation temperatures of 370°–389°C. These thermal properties were comparable to the properties of commercial PHB. Probable causes leading to differences in thermal properties of pentose and hexose-derived PHB are: extent of crystallinity and presence of impurity in the polymer matrix.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2017.03.117</identifier><identifier>PMID: 28366692</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Biopolymers ; Eichhornia crassipes ; Fermentation ; Hydroxybutyrates ; Parthenium hysterophorus ; PHB ; Plant Weeds ; Polyesters ; Ralstonia eutropha</subject><ispartof>Bioresource technology, 2017-10, Vol.242, p.304-310</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-fda82e4cb66033a79db04772b2a5ad6423dcb9d71d5370d36b70bf37461fdad33</citedby><cites>FETCH-LOGICAL-c405t-fda82e4cb66033a79db04772b2a5ad6423dcb9d71d5370d36b70bf37461fdad33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biortech.2017.03.117$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28366692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pradhan, Sushobhan</creatorcontrib><creatorcontrib>Borah, Arup Jyoti</creatorcontrib><creatorcontrib>Poddar, Maneesh Kumar</creatorcontrib><creatorcontrib>Dikshit, Pritam Kumar</creatorcontrib><creatorcontrib>Rohidas, Lilendar</creatorcontrib><creatorcontrib>Moholkar, Vijayanand S.</creatorcontrib><title>Microbial production, ultrasound-assisted extraction and characterization of biopolymer polyhydroxybutyrate (PHB) from terrestrial (P. hysterophorus) and aquatic (E. crassipes) invasive weeds</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>[Display omitted] •Synthesis of PHB from two invasive weeds, viz. P. hysterophorus and E. crassipes.•Separate fermentation of pentose and hexose-rich hydrolyzates by Ralstonia eutropha.•PHB content of dry cell mass=8.1–21.6% w/w.•PHB yield=6.85×10−3–36.41×10−3% w/w raw biomass.•Glass transition temp.=−9° to 9°C, maximum thermal degradation temp.=370° to 389°C. This study reports synthesis of biodegradable poly(3-hydroxybutyrate) (PHB) polymer from two invasive weeds, viz. P. hysterophorus and E. crassipes. The pentose and hexose-rich hydrolyzates obtained from acid pretreatment and enzymatic hydrolysis of two biomasses were separately fermented using Ralstonia eutropha MTCC 8320 sp. PHB was extracted using sonication and was characterized using FTIR, 1H and 13C NMR and XRD. PHB content of dry cell mass was 8.1–21.6% w/w, and the PHB yield was 6.85×10−3–36.41×10−3% w/w raw biomass. Thermal properties of PHB were determined by TGA, DTG and DSC analysis. PHB obtained from pentose-hydrolyzate had glass transition temperatures of 6°–9°C, while PHB from hexose-rich hydrolyzate had maximum thermal degradation temperatures of 370°–389°C. These thermal properties were comparable to the properties of commercial PHB. Probable causes leading to differences in thermal properties of pentose and hexose-derived PHB are: extent of crystallinity and presence of impurity in the polymer matrix.</description><subject>Biopolymers</subject><subject>Eichhornia crassipes</subject><subject>Fermentation</subject><subject>Hydroxybutyrates</subject><subject>Parthenium hysterophorus</subject><subject>PHB</subject><subject>Plant Weeds</subject><subject>Polyesters</subject><subject>Ralstonia eutropha</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU1v1DAQtRCILoW_UPm4lUjwR9ZObtCqUKQieoCz5dgTxaskTu1kafhz_DWc3ZYrp5Fn3pv3PA-hC0pySqj4sM9r58MEps0ZoTInPKdUvkAbWkqesUqKl2hDKkGycseKM_Qmxj0hhFPJXqMzVnIhRMU26M83Z4Kvne7wGLydzeT88B7P3RR09PNgMx2jixNYDI-pd5xjPVhsWr0-Ibjf-tj0DU6eRt8tPQS81naxwT8u9TwtQU-At_e3V5e4Cb7HiRcgTmEV3t7nuF2SRvBj68McL48C-mFOiw3e3uTYhNXGCGnkhoOO7gD4F4CNb9GrRncR3j3Vc_Tz882P69vs7vuXr9ef7jJTkN2UNVaXDApTC0E417KyNSmkZDXTO21Fwbg1dWUltTsuieWilqRuuCwETVTL-TnanvamKz3MybnqXTTQdXoAP0dFy5KXvCKcJKg4QdNhYwzQqDG4XodFUaLW8NRePYen1vAU4SqFl4gXTxpz3YP9R3tOKwE-ngCQfnpwEFQ0DgYD1gUwk7Le_U_jL_YatIg</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Pradhan, Sushobhan</creator><creator>Borah, Arup Jyoti</creator><creator>Poddar, Maneesh Kumar</creator><creator>Dikshit, Pritam Kumar</creator><creator>Rohidas, Lilendar</creator><creator>Moholkar, Vijayanand S.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20171001</creationdate><title>Microbial production, ultrasound-assisted extraction and characterization of biopolymer polyhydroxybutyrate (PHB) from terrestrial (P. hysterophorus) and aquatic (E. crassipes) invasive weeds</title><author>Pradhan, Sushobhan ; Borah, Arup Jyoti ; Poddar, Maneesh Kumar ; Dikshit, Pritam Kumar ; Rohidas, Lilendar ; Moholkar, Vijayanand S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-fda82e4cb66033a79db04772b2a5ad6423dcb9d71d5370d36b70bf37461fdad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biopolymers</topic><topic>Eichhornia crassipes</topic><topic>Fermentation</topic><topic>Hydroxybutyrates</topic><topic>Parthenium hysterophorus</topic><topic>PHB</topic><topic>Plant Weeds</topic><topic>Polyesters</topic><topic>Ralstonia eutropha</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pradhan, Sushobhan</creatorcontrib><creatorcontrib>Borah, Arup Jyoti</creatorcontrib><creatorcontrib>Poddar, Maneesh Kumar</creatorcontrib><creatorcontrib>Dikshit, Pritam Kumar</creatorcontrib><creatorcontrib>Rohidas, Lilendar</creatorcontrib><creatorcontrib>Moholkar, Vijayanand S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pradhan, Sushobhan</au><au>Borah, Arup Jyoti</au><au>Poddar, Maneesh Kumar</au><au>Dikshit, Pritam Kumar</au><au>Rohidas, Lilendar</au><au>Moholkar, Vijayanand S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial production, ultrasound-assisted extraction and characterization of biopolymer polyhydroxybutyrate (PHB) from terrestrial (P. hysterophorus) and aquatic (E. crassipes) invasive weeds</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>242</volume><spage>304</spage><epage>310</epage><pages>304-310</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>[Display omitted] •Synthesis of PHB from two invasive weeds, viz. P. hysterophorus and E. crassipes.•Separate fermentation of pentose and hexose-rich hydrolyzates by Ralstonia eutropha.•PHB content of dry cell mass=8.1–21.6% w/w.•PHB yield=6.85×10−3–36.41×10−3% w/w raw biomass.•Glass transition temp.=−9° to 9°C, maximum thermal degradation temp.=370° to 389°C. This study reports synthesis of biodegradable poly(3-hydroxybutyrate) (PHB) polymer from two invasive weeds, viz. P. hysterophorus and E. crassipes. The pentose and hexose-rich hydrolyzates obtained from acid pretreatment and enzymatic hydrolysis of two biomasses were separately fermented using Ralstonia eutropha MTCC 8320 sp. PHB was extracted using sonication and was characterized using FTIR, 1H and 13C NMR and XRD. PHB content of dry cell mass was 8.1–21.6% w/w, and the PHB yield was 6.85×10−3–36.41×10−3% w/w raw biomass. Thermal properties of PHB were determined by TGA, DTG and DSC analysis. PHB obtained from pentose-hydrolyzate had glass transition temperatures of 6°–9°C, while PHB from hexose-rich hydrolyzate had maximum thermal degradation temperatures of 370°–389°C. These thermal properties were comparable to the properties of commercial PHB. Probable causes leading to differences in thermal properties of pentose and hexose-derived PHB are: extent of crystallinity and presence of impurity in the polymer matrix.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>28366692</pmid><doi>10.1016/j.biortech.2017.03.117</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2017-10, Vol.242, p.304-310
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_1883839030
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Biopolymers
Eichhornia crassipes
Fermentation
Hydroxybutyrates
Parthenium hysterophorus
PHB
Plant Weeds
Polyesters
Ralstonia eutropha
title Microbial production, ultrasound-assisted extraction and characterization of biopolymer polyhydroxybutyrate (PHB) from terrestrial (P. hysterophorus) and aquatic (E. crassipes) invasive weeds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20production,%20ultrasound-assisted%20extraction%20and%20characterization%20of%20biopolymer%20polyhydroxybutyrate%20(PHB)%20from%20terrestrial%20(P.%20hysterophorus)%20and%20aquatic%20(E.%20crassipes)%20invasive%20weeds&rft.jtitle=Bioresource%20technology&rft.au=Pradhan,%20Sushobhan&rft.date=2017-10-01&rft.volume=242&rft.spage=304&rft.epage=310&rft.pages=304-310&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2017.03.117&rft_dat=%3Cproquest_cross%3E1883839030%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1883839030&rft_id=info:pmid/28366692&rft_els_id=S096085241730398X&rfr_iscdi=true