Vertical and temporal variability of DMSP lyase activity in a coccolithophorid bloom in the northern North Sea

The climatically relevant trace gas dimethyl sulphide (DMS) is produced within the microbial food-web from the algal metabolite dimethylsulphoniopropionate (DMSP). The presence of DMSP lyase isozymes is necessary for this process. Measurements of in vitro DMSP lyase activity (DLA) were conducted in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Deep-sea research. Part II, Topical studies in oceanography Topical studies in oceanography, 2002, Vol.49 (15), p.3001-3016
Hauptverfasser: Steinke, Michael, Malin, Gill, Gibb, Stuart W, Burkill, Peter H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The climatically relevant trace gas dimethyl sulphide (DMS) is produced within the microbial food-web from the algal metabolite dimethylsulphoniopropionate (DMSP). The presence of DMSP lyase isozymes is necessary for this process. Measurements of in vitro DMSP lyase activity (DLA) were conducted in the northern North Sea in June 1999 in order to investigate the vertical and temporal variability of activity in a Lagrangian time-series process study. DLA ranged from 4 to 207 nM h −1, with maximum values close to the surface and between 30 and 50 m depth. DLA increased towards the surface relative to chlorophyll a, as did the non-photosynthetic but photoprotective pigment diadinoxanthin, DMS and dissolved dimethylsulphoxide, a likely oxidation product of DMS. These observations support the hypothesis that DMSP lyases can be affected by irradiance levels, and that DMSP and its cleavage products could be involved in scavenging oxygen radicals; hence, they may function as antioxidants in marine algae. Linear regression analysis of our field data showed reduced biomass of some oligotrich and non-oligotrich ciliates at higher levels of DLA, a finding that could be supportive of a role for phytoplankton DMSP lyases in chemical defence.
ISSN:0967-0645
1879-0100
DOI:10.1016/S0967-0645(02)00068-1