Apoptotic cell death in rat lung following mustard gas inhalation
To investigate apoptosis as a mechanism of sulfur mustard (SM) inhalation injury in animals, we studied different caspases (caspase-8, -9, -3, and -6) in the lungs from a ventilated rat SM aerosol inhalation model. SM activated all four caspases in cells obtained from bronchoalveolar lavage fluid (B...
Gespeichert in:
Veröffentlicht in: | American journal of physiology. Lung cellular and molecular physiology 2017-06, Vol.312 (6), p.L959-L968 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To investigate apoptosis as a mechanism of sulfur mustard (SM) inhalation injury in animals, we studied different caspases (caspase-8, -9, -3, and -6) in the lungs from a ventilated rat SM aerosol inhalation model. SM activated all four caspases in cells obtained from bronchoalveolar lavage fluid (BALF) as early as 6 h after exposure. Caspase-8, which is known to initiate the extrinsic Fas-mediated pathway of apoptosis, was increased fivefold between 6 and 24 h, decreasing to the unexposed-control level at 48 h. The initiator, caspase-9, in the intrinsic mitochondrial pathway of apoptosis as well as the executioner caspases, caspase-3 and -6, all peaked (
< 0.01) at 24 h; caspase-3 and -6 remained elevated, but caspase-9 decreased to unexposed-control level at 48 h. To study further the Fas pathway, we examined soluble as well as membrane-bound Fas ligand (sFas-L and mFas-L, respectively) and Fas receptor (Fas-R) in both BALF cells and BALF. At 24 h after SM exposure, sFas-L increased significantly in both BALF cells (
< 0.01) and BALF (
< 0.05). However, mFas-L increased only in BALF cells between 24 and 48 h (
< 0.1 and
< 0.001, respectively). Fas-R increased only in BALF cells by 6 h (
< 0.01) after SM exposure. Apoptosis in SM-inhaled rat lung specimens was also confirmed by both immunohistochemical staining using cleaved caspase-3 and -9 antibodies and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining as early as 6 h in the proximal trachea and bronchi, but not before 48 h in distal airways. These findings suggest pathogenic mechanisms at the cellular and molecular levels and logical therapeutic target(s) for SM inhalation injury in animals. |
---|---|
ISSN: | 1040-0605 1522-1504 |
DOI: | 10.1152/ajplung.00281.2015 |