Genome-Wide Identification and Analysis of the Type-B Authentic Response Regulator Gene Family in Peach (Prunus persica)

The type-B authentic response regulator (ARR-B) family members serve as DNA-binding transcriptional regulators, whose activities are probably regulated by phosphorylation/dephosphorylation, resulting in the rapid induction of type-A ARR genes. Type-B ARRs are believed to be involved in many biologic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cytogenetic and genome research 2017-01, Vol.151 (1), p.41-49
Hauptverfasser: Zeng, Jingjue, Zhu, Xudong, Haider, Muhammad S., Wang, Xicheng, Zhang, Cheng, Wang, Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The type-B authentic response regulator (ARR-B) family members serve as DNA-binding transcriptional regulators, whose activities are probably regulated by phosphorylation/dephosphorylation, resulting in the rapid induction of type-A ARR genes. Type-B ARRs are believed to be involved in many biological processes, including cytokinin signaling, plant growth, and stress responses through a chaperone or by isomerization of proline residues during protein folding. The public availability of complete peach genome sequences allows the identification of 23 ARR-B genes by HMMER and blast analysis. Scaffold locations of these genes in the peach genome were determined, and the protein domain and motif organization of peach type-B ARRs were analyzed. The phylogenetic relationships between peach type-B ARRs were also assessed. The expression profiles of peach ARR-B genes revealed that most of the type-B ARRs showed high expression levels in tissues undergoing rapid cell division and may engage more cytokinins, like half-opened flowers, fruits at expansion stages, and young leaves. These findings not only contribute to a better understanding of the complex regulation of the peach ARR-B gene family, but also provide valuable information for future research in peach functional genomics.
ISSN:1424-8581
1424-859X
DOI:10.1159/000458170